Proving a function is less or equal to a polynomial
$begingroup$
Lets say we got a differentiable function F: ℝ → ℝ and f(0) = a, f'(x) ≤ b for any x > 0.
Now, how to prove f(x) ≤ bx + a for any x ≥ 0 ?
It seems to be kinda simple, but I'm stuck.
real-analysis functions derivatives
$endgroup$
add a comment |
$begingroup$
Lets say we got a differentiable function F: ℝ → ℝ and f(0) = a, f'(x) ≤ b for any x > 0.
Now, how to prove f(x) ≤ bx + a for any x ≥ 0 ?
It seems to be kinda simple, but I'm stuck.
real-analysis functions derivatives
$endgroup$
add a comment |
$begingroup$
Lets say we got a differentiable function F: ℝ → ℝ and f(0) = a, f'(x) ≤ b for any x > 0.
Now, how to prove f(x) ≤ bx + a for any x ≥ 0 ?
It seems to be kinda simple, but I'm stuck.
real-analysis functions derivatives
$endgroup$
Lets say we got a differentiable function F: ℝ → ℝ and f(0) = a, f'(x) ≤ b for any x > 0.
Now, how to prove f(x) ≤ bx + a for any x ≥ 0 ?
It seems to be kinda simple, but I'm stuck.
real-analysis functions derivatives
real-analysis functions derivatives
asked Feb 1 at 17:00
sddssdds
316
316
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.
$endgroup$
add a comment |
$begingroup$
Integrals are monotone, hence you can just integrate $f'(x) leq b$.
$endgroup$
add a comment |
$begingroup$
Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.
$x=0$ case is trivial.
$endgroup$
add a comment |
$begingroup$
If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096468%2fproving-a-function-is-less-or-equal-to-a-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.
$endgroup$
add a comment |
$begingroup$
Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.
$endgroup$
add a comment |
$begingroup$
Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.
$endgroup$
Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.
answered Feb 1 at 17:03
cspruncsprun
2,804211
2,804211
add a comment |
add a comment |
$begingroup$
Integrals are monotone, hence you can just integrate $f'(x) leq b$.
$endgroup$
add a comment |
$begingroup$
Integrals are monotone, hence you can just integrate $f'(x) leq b$.
$endgroup$
add a comment |
$begingroup$
Integrals are monotone, hence you can just integrate $f'(x) leq b$.
$endgroup$
Integrals are monotone, hence you can just integrate $f'(x) leq b$.
answered Feb 1 at 17:04
KlausKlaus
2,955214
2,955214
add a comment |
add a comment |
$begingroup$
Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.
$x=0$ case is trivial.
$endgroup$
add a comment |
$begingroup$
Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.
$x=0$ case is trivial.
$endgroup$
add a comment |
$begingroup$
Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.
$x=0$ case is trivial.
$endgroup$
Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.
$x=0$ case is trivial.
answered Feb 1 at 17:13
Thomas ShelbyThomas Shelby
4,7362727
4,7362727
add a comment |
add a comment |
$begingroup$
If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$
$endgroup$
add a comment |
$begingroup$
If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$
$endgroup$
add a comment |
$begingroup$
If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$
$endgroup$
If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$
answered Feb 1 at 17:06
VasyaVasya
4,3571618
4,3571618
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096468%2fproving-a-function-is-less-or-equal-to-a-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown