Proving a function is less or equal to a polynomial












0












$begingroup$


Lets say we got a differentiable function F: ℝ → ℝ and f(0) = a, f'(x) ≤ b for any x > 0.



Now, how to prove f(x) ≤ bx + a for any x ≥ 0 ?



It seems to be kinda simple, but I'm stuck.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Lets say we got a differentiable function F: ℝ → ℝ and f(0) = a, f'(x) ≤ b for any x > 0.



    Now, how to prove f(x) ≤ bx + a for any x ≥ 0 ?



    It seems to be kinda simple, but I'm stuck.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Lets say we got a differentiable function F: ℝ → ℝ and f(0) = a, f'(x) ≤ b for any x > 0.



      Now, how to prove f(x) ≤ bx + a for any x ≥ 0 ?



      It seems to be kinda simple, but I'm stuck.










      share|cite|improve this question









      $endgroup$




      Lets say we got a differentiable function F: ℝ → ℝ and f(0) = a, f'(x) ≤ b for any x > 0.



      Now, how to prove f(x) ≤ bx + a for any x ≥ 0 ?



      It seems to be kinda simple, but I'm stuck.







      real-analysis functions derivatives






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 1 at 17:00









      sddssdds

      316




      316






















          4 Answers
          4






          active

          oldest

          votes


















          2












          $begingroup$

          Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Integrals are monotone, hence you can just integrate $f'(x) leq b$.






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.



              $x=0$ case is trivial.






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$






                share|cite|improve this answer









                $endgroup$














                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096468%2fproving-a-function-is-less-or-equal-to-a-polynomial%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  2












                  $begingroup$

                  Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.






                  share|cite|improve this answer









                  $endgroup$


















                    2












                    $begingroup$

                    Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.






                    share|cite|improve this answer









                    $endgroup$
















                      2












                      2








                      2





                      $begingroup$

                      Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.






                      share|cite|improve this answer









                      $endgroup$



                      Let $g(x) = bx + a$. Consider the function $h(x) = g(x) - f(x)$. We have $h(0) = 0$ and $h'(x) ge 0$ for all $x > 0$. Therefore, $h$ is non-decreasing on $(0,infty)$ and since $h(0) = 0$, we must have $h(x) ge 0$ for all $xge 0$. In other words, $g(x) ge f(x)$ for all $xge 0$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Feb 1 at 17:03









                      cspruncsprun

                      2,804211




                      2,804211























                          2












                          $begingroup$

                          Integrals are monotone, hence you can just integrate $f'(x) leq b$.






                          share|cite|improve this answer









                          $endgroup$


















                            2












                            $begingroup$

                            Integrals are monotone, hence you can just integrate $f'(x) leq b$.






                            share|cite|improve this answer









                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              Integrals are monotone, hence you can just integrate $f'(x) leq b$.






                              share|cite|improve this answer









                              $endgroup$



                              Integrals are monotone, hence you can just integrate $f'(x) leq b$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Feb 1 at 17:04









                              KlausKlaus

                              2,955214




                              2,955214























                                  1












                                  $begingroup$

                                  Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.



                                  $x=0$ case is trivial.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.



                                    $x=0$ case is trivial.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.



                                      $x=0$ case is trivial.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Given $xgt 0$, we can find $xiin (0,x)$ such that $$f'(xi)=frac {f (x)-f (0)}{x-0}.$$ Since $xigt 0$, $f'(xi)leq b$,$implies dfrac {f (x)-f (0)}{x-0}leq b $. Substituting $f (0)=a $, we get $f (x)leq bx+a $.



                                      $x=0$ case is trivial.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Feb 1 at 17:13









                                      Thomas ShelbyThomas Shelby

                                      4,7362727




                                      4,7362727























                                          0












                                          $begingroup$

                                          If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$






                                              share|cite|improve this answer









                                              $endgroup$



                                              If $h(x)le g(x)$ then $int_a^b h(x)dx le int_a^b g(x)dx$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Feb 1 at 17:06









                                              VasyaVasya

                                              4,3571618




                                              4,3571618






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096468%2fproving-a-function-is-less-or-equal-to-a-polynomial%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  MongoDB - Not Authorized To Execute Command

                                                  in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                                  How to fix TextFormField cause rebuild widget in Flutter