Puzzled with a double integration
$begingroup$
Double integration of $f(x,y) = frac{(x-y)}{(x+y)^3}$ for which $x$ ranges from $0$ to $1$ and
$y$ ranges from $0$ to $1$. It comes out to be $frac{1}{2}$.
But suppose that for $(a,b)$ the value of $f$ is $frac{(a-b)}{(a+b)^3}$ and there will be a pair $(b,a)$ where $f$ will be $frac{(b-a)}{(a+b)^3}$. both opposite in sign with equal value. for each $(a,b)$ pair we have $(b,a)$ hence overall integration should be $0$.
Please tell where am i wrong?
calculus integration
$endgroup$
add a comment |
$begingroup$
Double integration of $f(x,y) = frac{(x-y)}{(x+y)^3}$ for which $x$ ranges from $0$ to $1$ and
$y$ ranges from $0$ to $1$. It comes out to be $frac{1}{2}$.
But suppose that for $(a,b)$ the value of $f$ is $frac{(a-b)}{(a+b)^3}$ and there will be a pair $(b,a)$ where $f$ will be $frac{(b-a)}{(a+b)^3}$. both opposite in sign with equal value. for each $(a,b)$ pair we have $(b,a)$ hence overall integration should be $0$.
Please tell where am i wrong?
calculus integration
$endgroup$
add a comment |
$begingroup$
Double integration of $f(x,y) = frac{(x-y)}{(x+y)^3}$ for which $x$ ranges from $0$ to $1$ and
$y$ ranges from $0$ to $1$. It comes out to be $frac{1}{2}$.
But suppose that for $(a,b)$ the value of $f$ is $frac{(a-b)}{(a+b)^3}$ and there will be a pair $(b,a)$ where $f$ will be $frac{(b-a)}{(a+b)^3}$. both opposite in sign with equal value. for each $(a,b)$ pair we have $(b,a)$ hence overall integration should be $0$.
Please tell where am i wrong?
calculus integration
$endgroup$
Double integration of $f(x,y) = frac{(x-y)}{(x+y)^3}$ for which $x$ ranges from $0$ to $1$ and
$y$ ranges from $0$ to $1$. It comes out to be $frac{1}{2}$.
But suppose that for $(a,b)$ the value of $f$ is $frac{(a-b)}{(a+b)^3}$ and there will be a pair $(b,a)$ where $f$ will be $frac{(b-a)}{(a+b)^3}$. both opposite in sign with equal value. for each $(a,b)$ pair we have $(b,a)$ hence overall integration should be $0$.
Please tell where am i wrong?
calculus integration
calculus integration
edited Jan 30 at 21:03
GSofer
8831313
8831313
asked Jan 30 at 20:49
Jaswant ShekhawatJaswant Shekhawat
133
133
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
This integral is not absolutely convergent due to the singularity at $(x,y) = (0,0)$. Hence, a lot of weird things can happen if you try to evaluate the integral.
For example, $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dx,dy = -dfrac{1}{2}$$ but if we reverse the order of integration, we get $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dy,dx = dfrac{1}{2}.$$
$endgroup$
1
$begingroup$
Yes Fubini’s theorem doesn’t apply here!
$endgroup$
– mathcounterexamples.net
Jan 30 at 20:56
add a comment |
$begingroup$
If you write the integral as $lim_{epsilon to 0}int_epsilon^1int_epsilon^1 frac{x-y}{(x+y)^3}dxdy$ you will get $0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094092%2fpuzzled-with-a-double-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This integral is not absolutely convergent due to the singularity at $(x,y) = (0,0)$. Hence, a lot of weird things can happen if you try to evaluate the integral.
For example, $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dx,dy = -dfrac{1}{2}$$ but if we reverse the order of integration, we get $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dy,dx = dfrac{1}{2}.$$
$endgroup$
1
$begingroup$
Yes Fubini’s theorem doesn’t apply here!
$endgroup$
– mathcounterexamples.net
Jan 30 at 20:56
add a comment |
$begingroup$
This integral is not absolutely convergent due to the singularity at $(x,y) = (0,0)$. Hence, a lot of weird things can happen if you try to evaluate the integral.
For example, $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dx,dy = -dfrac{1}{2}$$ but if we reverse the order of integration, we get $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dy,dx = dfrac{1}{2}.$$
$endgroup$
1
$begingroup$
Yes Fubini’s theorem doesn’t apply here!
$endgroup$
– mathcounterexamples.net
Jan 30 at 20:56
add a comment |
$begingroup$
This integral is not absolutely convergent due to the singularity at $(x,y) = (0,0)$. Hence, a lot of weird things can happen if you try to evaluate the integral.
For example, $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dx,dy = -dfrac{1}{2}$$ but if we reverse the order of integration, we get $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dy,dx = dfrac{1}{2}.$$
$endgroup$
This integral is not absolutely convergent due to the singularity at $(x,y) = (0,0)$. Hence, a lot of weird things can happen if you try to evaluate the integral.
For example, $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dx,dy = -dfrac{1}{2}$$ but if we reverse the order of integration, we get $$int_{0}^{1}int_{0}^{1}dfrac{x-y}{(x+y)^3},dy,dx = dfrac{1}{2}.$$
answered Jan 30 at 20:55
JimmyK4542JimmyK4542
41.3k245107
41.3k245107
1
$begingroup$
Yes Fubini’s theorem doesn’t apply here!
$endgroup$
– mathcounterexamples.net
Jan 30 at 20:56
add a comment |
1
$begingroup$
Yes Fubini’s theorem doesn’t apply here!
$endgroup$
– mathcounterexamples.net
Jan 30 at 20:56
1
1
$begingroup$
Yes Fubini’s theorem doesn’t apply here!
$endgroup$
– mathcounterexamples.net
Jan 30 at 20:56
$begingroup$
Yes Fubini’s theorem doesn’t apply here!
$endgroup$
– mathcounterexamples.net
Jan 30 at 20:56
add a comment |
$begingroup$
If you write the integral as $lim_{epsilon to 0}int_epsilon^1int_epsilon^1 frac{x-y}{(x+y)^3}dxdy$ you will get $0$.
$endgroup$
add a comment |
$begingroup$
If you write the integral as $lim_{epsilon to 0}int_epsilon^1int_epsilon^1 frac{x-y}{(x+y)^3}dxdy$ you will get $0$.
$endgroup$
add a comment |
$begingroup$
If you write the integral as $lim_{epsilon to 0}int_epsilon^1int_epsilon^1 frac{x-y}{(x+y)^3}dxdy$ you will get $0$.
$endgroup$
If you write the integral as $lim_{epsilon to 0}int_epsilon^1int_epsilon^1 frac{x-y}{(x+y)^3}dxdy$ you will get $0$.
answered Jan 30 at 21:28
herb steinbergherb steinberg
3,1132311
3,1132311
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094092%2fpuzzled-with-a-double-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown