Same homotopy type as circle












0












$begingroup$


Let $S={(z_1,z_2,ldots, z_n)in mathbb{C}^n: |z_1|^2+|z_2|^2+ldots+|z_n|^2=1}$ let $K={(z_1,z_2,ldots, z_n)in S: |z_1|^2+|z_2|^2+ldots+|z_{n-1}|^2=1}$. Prove that $Ssetminus K=M$ has same homotopy type as circle?



My attempt: We define the deformation retract of $M$ to ${(z_1,z_2,ldots, z_n)in S:|z_n|^2=1}subset M$ by



$$f_t=frac{(1-t)(z_1,z_2,ldots,z_n)+ t(0,0,ldots, 0,frac{z_{n}}{|z_n|} )}{|(1-t)(z_1,z_2,ldots,z_n)+ t(0,0,ldots, 0,frac{z_{n}}{|z_n|} )|}$$



Will this homotopy work?



Are there any other ways to prove the result?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $S={(z_1,z_2,ldots, z_n)in mathbb{C}^n: |z_1|^2+|z_2|^2+ldots+|z_n|^2=1}$ let $K={(z_1,z_2,ldots, z_n)in S: |z_1|^2+|z_2|^2+ldots+|z_{n-1}|^2=1}$. Prove that $Ssetminus K=M$ has same homotopy type as circle?



    My attempt: We define the deformation retract of $M$ to ${(z_1,z_2,ldots, z_n)in S:|z_n|^2=1}subset M$ by



    $$f_t=frac{(1-t)(z_1,z_2,ldots,z_n)+ t(0,0,ldots, 0,frac{z_{n}}{|z_n|} )}{|(1-t)(z_1,z_2,ldots,z_n)+ t(0,0,ldots, 0,frac{z_{n}}{|z_n|} )|}$$



    Will this homotopy work?



    Are there any other ways to prove the result?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $S={(z_1,z_2,ldots, z_n)in mathbb{C}^n: |z_1|^2+|z_2|^2+ldots+|z_n|^2=1}$ let $K={(z_1,z_2,ldots, z_n)in S: |z_1|^2+|z_2|^2+ldots+|z_{n-1}|^2=1}$. Prove that $Ssetminus K=M$ has same homotopy type as circle?



      My attempt: We define the deformation retract of $M$ to ${(z_1,z_2,ldots, z_n)in S:|z_n|^2=1}subset M$ by



      $$f_t=frac{(1-t)(z_1,z_2,ldots,z_n)+ t(0,0,ldots, 0,frac{z_{n}}{|z_n|} )}{|(1-t)(z_1,z_2,ldots,z_n)+ t(0,0,ldots, 0,frac{z_{n}}{|z_n|} )|}$$



      Will this homotopy work?



      Are there any other ways to prove the result?










      share|cite|improve this question









      $endgroup$




      Let $S={(z_1,z_2,ldots, z_n)in mathbb{C}^n: |z_1|^2+|z_2|^2+ldots+|z_n|^2=1}$ let $K={(z_1,z_2,ldots, z_n)in S: |z_1|^2+|z_2|^2+ldots+|z_{n-1}|^2=1}$. Prove that $Ssetminus K=M$ has same homotopy type as circle?



      My attempt: We define the deformation retract of $M$ to ${(z_1,z_2,ldots, z_n)in S:|z_n|^2=1}subset M$ by



      $$f_t=frac{(1-t)(z_1,z_2,ldots,z_n)+ t(0,0,ldots, 0,frac{z_{n}}{|z_n|} )}{|(1-t)(z_1,z_2,ldots,z_n)+ t(0,0,ldots, 0,frac{z_{n}}{|z_n|} )|}$$



      Will this homotopy work?



      Are there any other ways to prove the result?







      proof-verification algebraic-topology differential-topology singularity-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 30 at 11:15









      user345777user345777

      432312




      432312






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Yes it works. What details do you still need to check? Maybe:




          • This straight line homotopy in the numerator is never zero when $z_n neq 0$, so it does make sense to normalize it. This follows from the next point.


          • The homotopy stays in $Ssetminus K$, i.e. the last coordinate of the straight line homotopy is never zero if $z_n neq 0$ . To check this note $(1-t)z_n + tz_n/|z_n| = 0$ is equivalent to $1 = t(1-1/|z_n|)$ but $t(1-1/|z_n|) leq (1-1/|z_n|) leq 1$







          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093402%2fsame-homotopy-type-as-circle%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Yes it works. What details do you still need to check? Maybe:




            • This straight line homotopy in the numerator is never zero when $z_n neq 0$, so it does make sense to normalize it. This follows from the next point.


            • The homotopy stays in $Ssetminus K$, i.e. the last coordinate of the straight line homotopy is never zero if $z_n neq 0$ . To check this note $(1-t)z_n + tz_n/|z_n| = 0$ is equivalent to $1 = t(1-1/|z_n|)$ but $t(1-1/|z_n|) leq (1-1/|z_n|) leq 1$







            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Yes it works. What details do you still need to check? Maybe:




              • This straight line homotopy in the numerator is never zero when $z_n neq 0$, so it does make sense to normalize it. This follows from the next point.


              • The homotopy stays in $Ssetminus K$, i.e. the last coordinate of the straight line homotopy is never zero if $z_n neq 0$ . To check this note $(1-t)z_n + tz_n/|z_n| = 0$ is equivalent to $1 = t(1-1/|z_n|)$ but $t(1-1/|z_n|) leq (1-1/|z_n|) leq 1$







              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Yes it works. What details do you still need to check? Maybe:




                • This straight line homotopy in the numerator is never zero when $z_n neq 0$, so it does make sense to normalize it. This follows from the next point.


                • The homotopy stays in $Ssetminus K$, i.e. the last coordinate of the straight line homotopy is never zero if $z_n neq 0$ . To check this note $(1-t)z_n + tz_n/|z_n| = 0$ is equivalent to $1 = t(1-1/|z_n|)$ but $t(1-1/|z_n|) leq (1-1/|z_n|) leq 1$







                share|cite|improve this answer









                $endgroup$



                Yes it works. What details do you still need to check? Maybe:




                • This straight line homotopy in the numerator is never zero when $z_n neq 0$, so it does make sense to normalize it. This follows from the next point.


                • The homotopy stays in $Ssetminus K$, i.e. the last coordinate of the straight line homotopy is never zero if $z_n neq 0$ . To check this note $(1-t)z_n + tz_n/|z_n| = 0$ is equivalent to $1 = t(1-1/|z_n|)$ but $t(1-1/|z_n|) leq (1-1/|z_n|) leq 1$








                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 30 at 14:08









                BenBen

                4,318617




                4,318617






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093402%2fsame-homotopy-type-as-circle%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith