$U_1,U_2,…$ i.i.d. $U[0,1]$, $Psim mathrm{Poi}(lambda)$, find $F_{operatorname{min}(U_1,…,U_P)}$












2












$begingroup$



Let $(U_n)_n$ a sequence of random variables i.i.d $U[0,1]$ and let $Psim mathrm{Poi}(lambda)$ a random variable such that $P$ is independent of $(U_n)_n$. Let
$$
\ X=left{begin{matrix}
operatorname{min}{U_1,...,U_P}, Pne 0\
1,P=0
end{matrix}right.
$$

Find $F_X(t)$.




I saw that the solution is
$$
F_X(t)=left{begin{matrix}
0,tleq 0\
1-e^{-lambda t},0leq t<1 \
1, 1leq t
end{matrix}right.\
$$

But my solution is $F_X(t)=e^{-lambda}(e^{lambda t}-1)$ and I don't know where is my mistake:



Obviously for $1leq t$ then $mathbb{P}(Xleq t)=1$ and if $t<0$ then $mathbb{P}(Xleq t)=0$. For $0leq t <1$,
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t,P=0)+mathbb{P}(Xleq t,P>0)
$$

But if $P=0$ then $X=1$ then $mathbb{P}(Xleq t,P=0)=0$, thus
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t, P>0)=sum_{k=1}^infty left(prod_{j=1}^kmathbb{P}(U_jleq t)right)mathbb{P}(P=k)=sum_{k=1}^infty {(tlambda)^kover k!}cdot e^{-lambda}
\ =e^{-lambda}sum_{k=0}^infty{(tlambda)^kover k!}-e^{-lambda}= e^{-lambda}cdot e^{tlambda} -e^{-lambda} =e^{-lambda}(e^{lambda t}-1).
$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
    $endgroup$
    – Kavi Rama Murthy
    Jan 20 at 11:45


















2












$begingroup$



Let $(U_n)_n$ a sequence of random variables i.i.d $U[0,1]$ and let $Psim mathrm{Poi}(lambda)$ a random variable such that $P$ is independent of $(U_n)_n$. Let
$$
\ X=left{begin{matrix}
operatorname{min}{U_1,...,U_P}, Pne 0\
1,P=0
end{matrix}right.
$$

Find $F_X(t)$.




I saw that the solution is
$$
F_X(t)=left{begin{matrix}
0,tleq 0\
1-e^{-lambda t},0leq t<1 \
1, 1leq t
end{matrix}right.\
$$

But my solution is $F_X(t)=e^{-lambda}(e^{lambda t}-1)$ and I don't know where is my mistake:



Obviously for $1leq t$ then $mathbb{P}(Xleq t)=1$ and if $t<0$ then $mathbb{P}(Xleq t)=0$. For $0leq t <1$,
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t,P=0)+mathbb{P}(Xleq t,P>0)
$$

But if $P=0$ then $X=1$ then $mathbb{P}(Xleq t,P=0)=0$, thus
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t, P>0)=sum_{k=1}^infty left(prod_{j=1}^kmathbb{P}(U_jleq t)right)mathbb{P}(P=k)=sum_{k=1}^infty {(tlambda)^kover k!}cdot e^{-lambda}
\ =e^{-lambda}sum_{k=0}^infty{(tlambda)^kover k!}-e^{-lambda}= e^{-lambda}cdot e^{tlambda} -e^{-lambda} =e^{-lambda}(e^{lambda t}-1).
$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
    $endgroup$
    – Kavi Rama Murthy
    Jan 20 at 11:45
















2












2








2





$begingroup$



Let $(U_n)_n$ a sequence of random variables i.i.d $U[0,1]$ and let $Psim mathrm{Poi}(lambda)$ a random variable such that $P$ is independent of $(U_n)_n$. Let
$$
\ X=left{begin{matrix}
operatorname{min}{U_1,...,U_P}, Pne 0\
1,P=0
end{matrix}right.
$$

Find $F_X(t)$.




I saw that the solution is
$$
F_X(t)=left{begin{matrix}
0,tleq 0\
1-e^{-lambda t},0leq t<1 \
1, 1leq t
end{matrix}right.\
$$

But my solution is $F_X(t)=e^{-lambda}(e^{lambda t}-1)$ and I don't know where is my mistake:



Obviously for $1leq t$ then $mathbb{P}(Xleq t)=1$ and if $t<0$ then $mathbb{P}(Xleq t)=0$. For $0leq t <1$,
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t,P=0)+mathbb{P}(Xleq t,P>0)
$$

But if $P=0$ then $X=1$ then $mathbb{P}(Xleq t,P=0)=0$, thus
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t, P>0)=sum_{k=1}^infty left(prod_{j=1}^kmathbb{P}(U_jleq t)right)mathbb{P}(P=k)=sum_{k=1}^infty {(tlambda)^kover k!}cdot e^{-lambda}
\ =e^{-lambda}sum_{k=0}^infty{(tlambda)^kover k!}-e^{-lambda}= e^{-lambda}cdot e^{tlambda} -e^{-lambda} =e^{-lambda}(e^{lambda t}-1).
$$










share|cite|improve this question











$endgroup$





Let $(U_n)_n$ a sequence of random variables i.i.d $U[0,1]$ and let $Psim mathrm{Poi}(lambda)$ a random variable such that $P$ is independent of $(U_n)_n$. Let
$$
\ X=left{begin{matrix}
operatorname{min}{U_1,...,U_P}, Pne 0\
1,P=0
end{matrix}right.
$$

Find $F_X(t)$.




I saw that the solution is
$$
F_X(t)=left{begin{matrix}
0,tleq 0\
1-e^{-lambda t},0leq t<1 \
1, 1leq t
end{matrix}right.\
$$

But my solution is $F_X(t)=e^{-lambda}(e^{lambda t}-1)$ and I don't know where is my mistake:



Obviously for $1leq t$ then $mathbb{P}(Xleq t)=1$ and if $t<0$ then $mathbb{P}(Xleq t)=0$. For $0leq t <1$,
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t,P=0)+mathbb{P}(Xleq t,P>0)
$$

But if $P=0$ then $X=1$ then $mathbb{P}(Xleq t,P=0)=0$, thus
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t, P>0)=sum_{k=1}^infty left(prod_{j=1}^kmathbb{P}(U_jleq t)right)mathbb{P}(P=k)=sum_{k=1}^infty {(tlambda)^kover k!}cdot e^{-lambda}
\ =e^{-lambda}sum_{k=0}^infty{(tlambda)^kover k!}-e^{-lambda}= e^{-lambda}cdot e^{tlambda} -e^{-lambda} =e^{-lambda}(e^{lambda t}-1).
$$







probability random-variables uniform-distribution poisson-distribution






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 10:27









Davide Giraudo

128k17156268




128k17156268










asked Jan 20 at 10:29









J. DoeJ. Doe

14713




14713








  • 1




    $begingroup$
    You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
    $endgroup$
    – Kavi Rama Murthy
    Jan 20 at 11:45
















  • 1




    $begingroup$
    You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
    $endgroup$
    – Kavi Rama Murthy
    Jan 20 at 11:45










1




1




$begingroup$
You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
$endgroup$
– Kavi Rama Murthy
Jan 20 at 11:45






$begingroup$
You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
$endgroup$
– Kavi Rama Murthy
Jan 20 at 11:45












1 Answer
1






active

oldest

votes


















4












$begingroup$

Since $P(0le Xle 1)=1$, it suffices to show that
$$
Bbb P(X>t)=e^{-lambda t}
$$
for all $tin [0,1)$. Note that
$$begin{eqnarray}
Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
&=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
&=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
end{eqnarray}$$
as desired.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080397%2fu-1-u-2-i-i-d-u0-1-p-sim-mathrmpoi-lambda-find-f-operator%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Since $P(0le Xle 1)=1$, it suffices to show that
    $$
    Bbb P(X>t)=e^{-lambda t}
    $$
    for all $tin [0,1)$. Note that
    $$begin{eqnarray}
    Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
    &=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
    &=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
    &=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
    &=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
    &=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
    &=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
    end{eqnarray}$$
    as desired.






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Since $P(0le Xle 1)=1$, it suffices to show that
      $$
      Bbb P(X>t)=e^{-lambda t}
      $$
      for all $tin [0,1)$. Note that
      $$begin{eqnarray}
      Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
      &=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
      &=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
      &=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
      &=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
      &=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
      &=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
      end{eqnarray}$$
      as desired.






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Since $P(0le Xle 1)=1$, it suffices to show that
        $$
        Bbb P(X>t)=e^{-lambda t}
        $$
        for all $tin [0,1)$. Note that
        $$begin{eqnarray}
        Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
        &=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
        &=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
        &=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
        &=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
        &=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
        &=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
        end{eqnarray}$$
        as desired.






        share|cite|improve this answer









        $endgroup$



        Since $P(0le Xle 1)=1$, it suffices to show that
        $$
        Bbb P(X>t)=e^{-lambda t}
        $$
        for all $tin [0,1)$. Note that
        $$begin{eqnarray}
        Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
        &=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
        &=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
        &=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
        &=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
        &=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
        &=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
        end{eqnarray}$$
        as desired.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 20 at 11:43









        SongSong

        18.6k21651




        18.6k21651






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080397%2fu-1-u-2-i-i-d-u0-1-p-sim-mathrmpoi-lambda-find-f-operator%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith