$U_1,U_2,…$ i.i.d. $U[0,1]$, $Psim mathrm{Poi}(lambda)$, find $F_{operatorname{min}(U_1,…,U_P)}$
$begingroup$
Let $(U_n)_n$ a sequence of random variables i.i.d $U[0,1]$ and let $Psim mathrm{Poi}(lambda)$ a random variable such that $P$ is independent of $(U_n)_n$. Let
$$
\ X=left{begin{matrix}
operatorname{min}{U_1,...,U_P}, Pne 0\
1,P=0
end{matrix}right.
$$
Find $F_X(t)$.
I saw that the solution is
$$
F_X(t)=left{begin{matrix}
0,tleq 0\
1-e^{-lambda t},0leq t<1 \
1, 1leq t
end{matrix}right.\
$$
But my solution is $F_X(t)=e^{-lambda}(e^{lambda t}-1)$ and I don't know where is my mistake:
Obviously for $1leq t$ then $mathbb{P}(Xleq t)=1$ and if $t<0$ then $mathbb{P}(Xleq t)=0$. For $0leq t <1$,
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t,P=0)+mathbb{P}(Xleq t,P>0)
$$
But if $P=0$ then $X=1$ then $mathbb{P}(Xleq t,P=0)=0$, thus
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t, P>0)=sum_{k=1}^infty left(prod_{j=1}^kmathbb{P}(U_jleq t)right)mathbb{P}(P=k)=sum_{k=1}^infty {(tlambda)^kover k!}cdot e^{-lambda}
\ =e^{-lambda}sum_{k=0}^infty{(tlambda)^kover k!}-e^{-lambda}= e^{-lambda}cdot e^{tlambda} -e^{-lambda} =e^{-lambda}(e^{lambda t}-1).
$$
probability random-variables uniform-distribution poisson-distribution
$endgroup$
add a comment |
$begingroup$
Let $(U_n)_n$ a sequence of random variables i.i.d $U[0,1]$ and let $Psim mathrm{Poi}(lambda)$ a random variable such that $P$ is independent of $(U_n)_n$. Let
$$
\ X=left{begin{matrix}
operatorname{min}{U_1,...,U_P}, Pne 0\
1,P=0
end{matrix}right.
$$
Find $F_X(t)$.
I saw that the solution is
$$
F_X(t)=left{begin{matrix}
0,tleq 0\
1-e^{-lambda t},0leq t<1 \
1, 1leq t
end{matrix}right.\
$$
But my solution is $F_X(t)=e^{-lambda}(e^{lambda t}-1)$ and I don't know where is my mistake:
Obviously for $1leq t$ then $mathbb{P}(Xleq t)=1$ and if $t<0$ then $mathbb{P}(Xleq t)=0$. For $0leq t <1$,
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t,P=0)+mathbb{P}(Xleq t,P>0)
$$
But if $P=0$ then $X=1$ then $mathbb{P}(Xleq t,P=0)=0$, thus
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t, P>0)=sum_{k=1}^infty left(prod_{j=1}^kmathbb{P}(U_jleq t)right)mathbb{P}(P=k)=sum_{k=1}^infty {(tlambda)^kover k!}cdot e^{-lambda}
\ =e^{-lambda}sum_{k=0}^infty{(tlambda)^kover k!}-e^{-lambda}= e^{-lambda}cdot e^{tlambda} -e^{-lambda} =e^{-lambda}(e^{lambda t}-1).
$$
probability random-variables uniform-distribution poisson-distribution
$endgroup$
1
$begingroup$
You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
$endgroup$
– Kavi Rama Murthy
Jan 20 at 11:45
add a comment |
$begingroup$
Let $(U_n)_n$ a sequence of random variables i.i.d $U[0,1]$ and let $Psim mathrm{Poi}(lambda)$ a random variable such that $P$ is independent of $(U_n)_n$. Let
$$
\ X=left{begin{matrix}
operatorname{min}{U_1,...,U_P}, Pne 0\
1,P=0
end{matrix}right.
$$
Find $F_X(t)$.
I saw that the solution is
$$
F_X(t)=left{begin{matrix}
0,tleq 0\
1-e^{-lambda t},0leq t<1 \
1, 1leq t
end{matrix}right.\
$$
But my solution is $F_X(t)=e^{-lambda}(e^{lambda t}-1)$ and I don't know where is my mistake:
Obviously for $1leq t$ then $mathbb{P}(Xleq t)=1$ and if $t<0$ then $mathbb{P}(Xleq t)=0$. For $0leq t <1$,
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t,P=0)+mathbb{P}(Xleq t,P>0)
$$
But if $P=0$ then $X=1$ then $mathbb{P}(Xleq t,P=0)=0$, thus
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t, P>0)=sum_{k=1}^infty left(prod_{j=1}^kmathbb{P}(U_jleq t)right)mathbb{P}(P=k)=sum_{k=1}^infty {(tlambda)^kover k!}cdot e^{-lambda}
\ =e^{-lambda}sum_{k=0}^infty{(tlambda)^kover k!}-e^{-lambda}= e^{-lambda}cdot e^{tlambda} -e^{-lambda} =e^{-lambda}(e^{lambda t}-1).
$$
probability random-variables uniform-distribution poisson-distribution
$endgroup$
Let $(U_n)_n$ a sequence of random variables i.i.d $U[0,1]$ and let $Psim mathrm{Poi}(lambda)$ a random variable such that $P$ is independent of $(U_n)_n$. Let
$$
\ X=left{begin{matrix}
operatorname{min}{U_1,...,U_P}, Pne 0\
1,P=0
end{matrix}right.
$$
Find $F_X(t)$.
I saw that the solution is
$$
F_X(t)=left{begin{matrix}
0,tleq 0\
1-e^{-lambda t},0leq t<1 \
1, 1leq t
end{matrix}right.\
$$
But my solution is $F_X(t)=e^{-lambda}(e^{lambda t}-1)$ and I don't know where is my mistake:
Obviously for $1leq t$ then $mathbb{P}(Xleq t)=1$ and if $t<0$ then $mathbb{P}(Xleq t)=0$. For $0leq t <1$,
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t,P=0)+mathbb{P}(Xleq t,P>0)
$$
But if $P=0$ then $X=1$ then $mathbb{P}(Xleq t,P=0)=0$, thus
$$
\ mathbb{P}(Xleq t)=mathbb{P}(Xleq t, P>0)=sum_{k=1}^infty left(prod_{j=1}^kmathbb{P}(U_jleq t)right)mathbb{P}(P=k)=sum_{k=1}^infty {(tlambda)^kover k!}cdot e^{-lambda}
\ =e^{-lambda}sum_{k=0}^infty{(tlambda)^kover k!}-e^{-lambda}= e^{-lambda}cdot e^{tlambda} -e^{-lambda} =e^{-lambda}(e^{lambda t}-1).
$$
probability random-variables uniform-distribution poisson-distribution
probability random-variables uniform-distribution poisson-distribution
edited Feb 2 at 10:27
Davide Giraudo
128k17156268
128k17156268
asked Jan 20 at 10:29
J. DoeJ. Doe
14713
14713
1
$begingroup$
You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
$endgroup$
– Kavi Rama Murthy
Jan 20 at 11:45
add a comment |
1
$begingroup$
You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
$endgroup$
– Kavi Rama Murthy
Jan 20 at 11:45
1
1
$begingroup$
You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
$endgroup$
– Kavi Rama Murthy
Jan 20 at 11:45
$begingroup$
You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
$endgroup$
– Kavi Rama Murthy
Jan 20 at 11:45
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $P(0le Xle 1)=1$, it suffices to show that
$$
Bbb P(X>t)=e^{-lambda t}
$$ for all $tin [0,1)$. Note that
$$begin{eqnarray}
Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
&=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
&=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
end{eqnarray}$$ as desired.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080397%2fu-1-u-2-i-i-d-u0-1-p-sim-mathrmpoi-lambda-find-f-operator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $P(0le Xle 1)=1$, it suffices to show that
$$
Bbb P(X>t)=e^{-lambda t}
$$ for all $tin [0,1)$. Note that
$$begin{eqnarray}
Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
&=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
&=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
end{eqnarray}$$ as desired.
$endgroup$
add a comment |
$begingroup$
Since $P(0le Xle 1)=1$, it suffices to show that
$$
Bbb P(X>t)=e^{-lambda t}
$$ for all $tin [0,1)$. Note that
$$begin{eqnarray}
Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
&=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
&=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
end{eqnarray}$$ as desired.
$endgroup$
add a comment |
$begingroup$
Since $P(0le Xle 1)=1$, it suffices to show that
$$
Bbb P(X>t)=e^{-lambda t}
$$ for all $tin [0,1)$. Note that
$$begin{eqnarray}
Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
&=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
&=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
end{eqnarray}$$ as desired.
$endgroup$
Since $P(0le Xle 1)=1$, it suffices to show that
$$
Bbb P(X>t)=e^{-lambda t}
$$ for all $tin [0,1)$. Note that
$$begin{eqnarray}
Bbb P(X>t)&=&sum_{k=0}^infty Bbb P(X>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t, P=k)\
&=&sum_{k=0}^infty Bbb P(min{U_1,ldots,U_k}>t)Bbb P( P=k)\
&=&sum_{k=0}^infty Bbb P(U_i>t,forall ile k)Bbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kBbb P( P=k)\
&=&sum_{k=0}^infty (1-t)^kfrac{lambda^ke^{-lambda}}{k!}\
&=&sum_{k=0}^infty frac{(lambda(1-t))^k e^{-lambda}}{k!}=e^{lambda(1-t)}e^{-lambda}=e^{-lambda t}
end{eqnarray}$$ as desired.
answered Jan 20 at 11:43
SongSong
18.6k21651
18.6k21651
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080397%2fu-1-u-2-i-i-d-u0-1-p-sim-mathrmpoi-lambda-find-f-operator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown

1
$begingroup$
You seme to assume that $P=k$ implies $min (U_1,U_2,...,U_P)=U_k$ which is false.
$endgroup$
– Kavi Rama Murthy
Jan 20 at 11:45