Where to start with: $lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$












2












$begingroup$


I have limit:



$lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$



I have to find that it is equal to -6 but I do not know how.



What I did was to get rid of cube roots by multiply them with



$dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}$



which gives me:



$dfrac{((n^{48}+n) - (n^{48}+n^2))((n^3 +3)^{12} - (n^4+4n)^9 )}{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$



but I can not move from here other than just do



$dfrac{(n - n^2)((n^3 +3)^{12} - (n^4+4n)^9) }{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$



I am trying to find some known limits there or something I can grasp on, but can not find anything.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
    $endgroup$
    – cris14
    Jan 29 at 15:12












  • $begingroup$
    Oh. Sorry. I misread.
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:17










  • $begingroup$
    @JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
    $endgroup$
    – cris14
    Jan 29 at 15:21










  • $begingroup$
    You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:22










  • $begingroup$
    But, yes, that's a good start.
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:23
















2












$begingroup$


I have limit:



$lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$



I have to find that it is equal to -6 but I do not know how.



What I did was to get rid of cube roots by multiply them with



$dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}$



which gives me:



$dfrac{((n^{48}+n) - (n^{48}+n^2))((n^3 +3)^{12} - (n^4+4n)^9 )}{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$



but I can not move from here other than just do



$dfrac{(n - n^2)((n^3 +3)^{12} - (n^4+4n)^9) }{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$



I am trying to find some known limits there or something I can grasp on, but can not find anything.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
    $endgroup$
    – cris14
    Jan 29 at 15:12












  • $begingroup$
    Oh. Sorry. I misread.
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:17










  • $begingroup$
    @JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
    $endgroup$
    – cris14
    Jan 29 at 15:21










  • $begingroup$
    You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:22










  • $begingroup$
    But, yes, that's a good start.
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:23














2












2








2


1



$begingroup$


I have limit:



$lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$



I have to find that it is equal to -6 but I do not know how.



What I did was to get rid of cube roots by multiply them with



$dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}$



which gives me:



$dfrac{((n^{48}+n) - (n^{48}+n^2))((n^3 +3)^{12} - (n^4+4n)^9 )}{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$



but I can not move from here other than just do



$dfrac{(n - n^2)((n^3 +3)^{12} - (n^4+4n)^9) }{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$



I am trying to find some known limits there or something I can grasp on, but can not find anything.










share|cite|improve this question











$endgroup$




I have limit:



$lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$



I have to find that it is equal to -6 but I do not know how.



What I did was to get rid of cube roots by multiply them with



$dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}$



which gives me:



$dfrac{((n^{48}+n) - (n^{48}+n^2))((n^3 +3)^{12} - (n^4+4n)^9 )}{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$



but I can not move from here other than just do



$dfrac{(n - n^2)((n^3 +3)^{12} - (n^4+4n)^9) }{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$



I am trying to find some known limits there or something I can grasp on, but can not find anything.







real-analysis limits radicals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 16:07









Martin Sleziak

44.9k10122277




44.9k10122277










asked Jan 29 at 15:01









cris14cris14

1338




1338












  • $begingroup$
    @JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
    $endgroup$
    – cris14
    Jan 29 at 15:12












  • $begingroup$
    Oh. Sorry. I misread.
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:17










  • $begingroup$
    @JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
    $endgroup$
    – cris14
    Jan 29 at 15:21










  • $begingroup$
    You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:22










  • $begingroup$
    But, yes, that's a good start.
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:23


















  • $begingroup$
    @JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
    $endgroup$
    – cris14
    Jan 29 at 15:12












  • $begingroup$
    Oh. Sorry. I misread.
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:17










  • $begingroup$
    @JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
    $endgroup$
    – cris14
    Jan 29 at 15:21










  • $begingroup$
    You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:22










  • $begingroup$
    But, yes, that's a good start.
    $endgroup$
    – Jyrki Lahtonen
    Jan 29 at 15:23
















$begingroup$
@JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
$endgroup$
– cris14
Jan 29 at 15:12






$begingroup$
@JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
$endgroup$
– cris14
Jan 29 at 15:12














$begingroup$
Oh. Sorry. I misread.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:17




$begingroup$
Oh. Sorry. I misread.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:17












$begingroup$
@JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
$endgroup$
– cris14
Jan 29 at 15:21




$begingroup$
@JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
$endgroup$
– cris14
Jan 29 at 15:21












$begingroup$
You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:22




$begingroup$
You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:22












$begingroup$
But, yes, that's a good start.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:23




$begingroup$
But, yes, that's a good start.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:23










1 Answer
1






active

oldest

votes


















0












$begingroup$

Expanding the 2nd term



$$((n^3+3)^{12}-(n^4+4n)^{9})\
=((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
=18n^{30}+cdots$$



where the dots represent lower order terms. Expanding the 1st term



$$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
=n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
=n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
=n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$



The product of the two terms is:



$$(-6+6n^{-1}+cdots)$$



which equals $-6$ in the limit.



Hope that helps






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092275%2fwhere-to-start-with-lim-n-to-infty-sqrt3n48n-sqrt3n48n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Expanding the 2nd term



    $$((n^3+3)^{12}-(n^4+4n)^{9})\
    =((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
    =18n^{30}+cdots$$



    where the dots represent lower order terms. Expanding the 1st term



    $$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
    =n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
    =n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
    =n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$



    The product of the two terms is:



    $$(-6+6n^{-1}+cdots)$$



    which equals $-6$ in the limit.



    Hope that helps






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Expanding the 2nd term



      $$((n^3+3)^{12}-(n^4+4n)^{9})\
      =((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
      =18n^{30}+cdots$$



      where the dots represent lower order terms. Expanding the 1st term



      $$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
      =n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
      =n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
      =n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$



      The product of the two terms is:



      $$(-6+6n^{-1}+cdots)$$



      which equals $-6$ in the limit.



      Hope that helps






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Expanding the 2nd term



        $$((n^3+3)^{12}-(n^4+4n)^{9})\
        =((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
        =18n^{30}+cdots$$



        where the dots represent lower order terms. Expanding the 1st term



        $$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
        =n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
        =n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
        =n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$



        The product of the two terms is:



        $$(-6+6n^{-1}+cdots)$$



        which equals $-6$ in the limit.



        Hope that helps






        share|cite|improve this answer









        $endgroup$



        Expanding the 2nd term



        $$((n^3+3)^{12}-(n^4+4n)^{9})\
        =((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
        =18n^{30}+cdots$$



        where the dots represent lower order terms. Expanding the 1st term



        $$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
        =n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
        =n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
        =n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$



        The product of the two terms is:



        $$(-6+6n^{-1}+cdots)$$



        which equals $-6$ in the limit.



        Hope that helps







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 29 at 17:19









        xidgelxidgel

        28815




        28815






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092275%2fwhere-to-start-with-lim-n-to-infty-sqrt3n48n-sqrt3n48n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            Npm cannot find a required file even through it is in the searched directory

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith