Where to start with: $lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$
$begingroup$
I have limit:
$lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$
I have to find that it is equal to -6 but I do not know how.
What I did was to get rid of cube roots by multiply them with
$dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}$
which gives me:
$dfrac{((n^{48}+n) - (n^{48}+n^2))((n^3 +3)^{12} - (n^4+4n)^9 )}{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$
but I can not move from here other than just do
$dfrac{(n - n^2)((n^3 +3)^{12} - (n^4+4n)^9) }{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$
I am trying to find some known limits there or something I can grasp on, but can not find anything.
real-analysis limits radicals
$endgroup$
|
show 2 more comments
$begingroup$
I have limit:
$lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$
I have to find that it is equal to -6 but I do not know how.
What I did was to get rid of cube roots by multiply them with
$dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}$
which gives me:
$dfrac{((n^{48}+n) - (n^{48}+n^2))((n^3 +3)^{12} - (n^4+4n)^9 )}{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$
but I can not move from here other than just do
$dfrac{(n - n^2)((n^3 +3)^{12} - (n^4+4n)^9) }{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$
I am trying to find some known limits there or something I can grasp on, but can not find anything.
real-analysis limits radicals
$endgroup$
$begingroup$
@JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
$endgroup$
– cris14
Jan 29 at 15:12
$begingroup$
Oh. Sorry. I misread.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:17
$begingroup$
@JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
$endgroup$
– cris14
Jan 29 at 15:21
$begingroup$
You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:22
$begingroup$
But, yes, that's a good start.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:23
|
show 2 more comments
$begingroup$
I have limit:
$lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$
I have to find that it is equal to -6 but I do not know how.
What I did was to get rid of cube roots by multiply them with
$dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}$
which gives me:
$dfrac{((n^{48}+n) - (n^{48}+n^2))((n^3 +3)^{12} - (n^4+4n)^9 )}{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$
but I can not move from here other than just do
$dfrac{(n - n^2)((n^3 +3)^{12} - (n^4+4n)^9) }{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$
I am trying to find some known limits there or something I can grasp on, but can not find anything.
real-analysis limits radicals
$endgroup$
I have limit:
$lim_{ntoinfty} (sqrt[3]{n^{48}+n} - sqrt[3]{n^{48}+n^2}) ((n^3 +3)^{12} - (n^4+4n)^9)$
I have to find that it is equal to -6 but I do not know how.
What I did was to get rid of cube roots by multiply them with
$dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2)}$
which gives me:
$dfrac{((n^{48}+n) - (n^{48}+n^2))((n^3 +3)^{12} - (n^4+4n)^9 )}{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$
but I can not move from here other than just do
$dfrac{(n - n^2)((n^3 +3)^{12} - (n^4+4n)^9) }{(sqrt[3]{1n^{48}+n})^2 + (sqrt[3]{1n^{48}+n})(sqrt[3]{1n^{48}+n^2})+ (sqrt[3]{1n^{48}+n^2})^2)}$
I am trying to find some known limits there or something I can grasp on, but can not find anything.
real-analysis limits radicals
real-analysis limits radicals
edited Jan 29 at 16:07


Martin Sleziak
44.9k10122277
44.9k10122277
asked Jan 29 at 15:01
cris14cris14
1338
1338
$begingroup$
@JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
$endgroup$
– cris14
Jan 29 at 15:12
$begingroup$
Oh. Sorry. I misread.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:17
$begingroup$
@JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
$endgroup$
– cris14
Jan 29 at 15:21
$begingroup$
You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:22
$begingroup$
But, yes, that's a good start.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:23
|
show 2 more comments
$begingroup$
@JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
$endgroup$
– cris14
Jan 29 at 15:12
$begingroup$
Oh. Sorry. I misread.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:17
$begingroup$
@JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
$endgroup$
– cris14
Jan 29 at 15:21
$begingroup$
You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:22
$begingroup$
But, yes, that's a good start.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:23
$begingroup$
@JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
$endgroup$
– cris14
Jan 29 at 15:12
$begingroup$
@JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
$endgroup$
– cris14
Jan 29 at 15:12
$begingroup$
Oh. Sorry. I misread.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:17
$begingroup$
Oh. Sorry. I misread.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:17
$begingroup$
@JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
$endgroup$
– cris14
Jan 29 at 15:21
$begingroup$
@JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
$endgroup$
– cris14
Jan 29 at 15:21
$begingroup$
You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:22
$begingroup$
You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:22
$begingroup$
But, yes, that's a good start.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:23
$begingroup$
But, yes, that's a good start.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:23
|
show 2 more comments
1 Answer
1
active
oldest
votes
$begingroup$
Expanding the 2nd term
$$((n^3+3)^{12}-(n^4+4n)^{9})\
=((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
=18n^{30}+cdots$$
where the dots represent lower order terms. Expanding the 1st term
$$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
=n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
=n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
=n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$
The product of the two terms is:
$$(-6+6n^{-1}+cdots)$$
which equals $-6$ in the limit.
Hope that helps
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092275%2fwhere-to-start-with-lim-n-to-infty-sqrt3n48n-sqrt3n48n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Expanding the 2nd term
$$((n^3+3)^{12}-(n^4+4n)^{9})\
=((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
=18n^{30}+cdots$$
where the dots represent lower order terms. Expanding the 1st term
$$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
=n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
=n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
=n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$
The product of the two terms is:
$$(-6+6n^{-1}+cdots)$$
which equals $-6$ in the limit.
Hope that helps
$endgroup$
add a comment |
$begingroup$
Expanding the 2nd term
$$((n^3+3)^{12}-(n^4+4n)^{9})\
=((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
=18n^{30}+cdots$$
where the dots represent lower order terms. Expanding the 1st term
$$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
=n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
=n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
=n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$
The product of the two terms is:
$$(-6+6n^{-1}+cdots)$$
which equals $-6$ in the limit.
Hope that helps
$endgroup$
add a comment |
$begingroup$
Expanding the 2nd term
$$((n^3+3)^{12}-(n^4+4n)^{9})\
=((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
=18n^{30}+cdots$$
where the dots represent lower order terms. Expanding the 1st term
$$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
=n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
=n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
=n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$
The product of the two terms is:
$$(-6+6n^{-1}+cdots)$$
which equals $-6$ in the limit.
Hope that helps
$endgroup$
Expanding the 2nd term
$$((n^3+3)^{12}-(n^4+4n)^{9})\
=((n^{36}+36n^{33}+594n^{30}+cdots)-(n^{36}+36n^{33}+576n^{30}+cdots))\
=18n^{30}+cdots$$
where the dots represent lower order terms. Expanding the 1st term
$$(sqrt[3]{n^{48}+n}-sqrt[3]{n^{48}+n^{2}})\
=n^{16}(sqrt[3]{1+n^{-47}}-sqrt[3]{1+n^{-46}})\
=n^{16}((1+frac{1}{3}n^{-47}+cdots)-(1+frac{1}{3}n^{-46}+cdots))\
=n^{16}(-frac{1}{3}n^{-46}+frac{1}{3}n^{-47}+cdots)$$
The product of the two terms is:
$$(-6+6n^{-1}+cdots)$$
which equals $-6$ in the limit.
Hope that helps
answered Jan 29 at 17:19
xidgelxidgel
28815
28815
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092275%2fwhere-to-start-with-lim-n-to-infty-sqrt3n48n-sqrt3n48n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@JyrkiLahtonen But that's what I did when multiplying with $dfrac{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2}{(sqrt[3]{n^{48}+n})^2 + (sqrt[3]{n^{48}+n})(sqrt[3]{n^{48}+n^2})+ (sqrt[3]{n^{48}+n^2})^2})$ or not?
$endgroup$
– cris14
Jan 29 at 15:12
$begingroup$
Oh. Sorry. I misread.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:17
$begingroup$
@JyrkiLahtonen No worries, I have been wondering if it is at least a good start? Because the formula I get after the multiplying is looking like it is getting me nowhere.
$endgroup$
– cris14
Jan 29 at 15:21
$begingroup$
You still need to (at least) observe that the binomial formula expansions of both $(n^3+3)^{12}$ and $(n^4+4n)^9$ begin with $n^{36}+36n^{33}+cdots$, so those terms cancel. The next terms on the other hand...
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:22
$begingroup$
But, yes, that's a good start.
$endgroup$
– Jyrki Lahtonen
Jan 29 at 15:23