asymptotic limit of exponential function
What is the limit of following exponential function
$e^{dotimath k} $
when $k_{R}rightarrow -infty$ and $k_{R}rightarrow infty$?
where $k_{R}$ means real part of $k$.
In the book,
begin{equation}
r=frac{g_{1}+g_{2}}{1+f_{1}+f_{2}}, quad (1)
end{equation}
where
begin{eqnarray}
&& g_{1}=e^{eta_{1}+eta_{2}}, \
&& g_{2} = a_{12bar{1}}e^{eta_{1}+bar{eta}_{1}+eta_{2}}+
a_{12bar{2}}e^{eta_{1}+bar{eta}_{2}+eta_{2}}, \
&& f_{1} = a_{1bar{1}}e^{eta_{1}+bar{eta}_{1}} +
a_{1bar{2}}e^{eta_{1}+bar{eta}_{2}} +
a_{2bar{1}}e^{eta_{2}+bar{eta}_{1}} +
a_{2bar{2}}e^{eta_{2}+bar{eta}_{2}}, \
&& f_{2} =
a_{12bar{1}bar{2}}e^{eta_{1}+bar{eta}_{1}+eta_{2}+bar{eta}_{2}},
\
&& a_{ijbar{k}} = a_{ij} a_{ibar{k}} a_{jbar{k}}, quad
a_{ijbar{k}bar{l}} = a_{ij} a_{ibar{k}} a_{ibar{l}} a_{jbar{k}}
a_{jbar{l}} a_{bar{k}bar{l}}, \
&&a_{ij} = (p_{i}-p_{j})^{2}, ; a_{ibar{j}} =
frac{(p_{i}bar{p}_{j})^{2}}{(p_{i}+bar{p}_{j})^{2}}, ;
a_{bar{i}bar{j}} = (p_{i}-bar{p}_{j})^{2}
end{eqnarray}
where $eta_{i} = p_{i}^{-1}x + p_{i}t,; i=1,;2$. Asymptotic form
of equation (1):
begin{equation}
frac{p_{1R}}{|p_{1}|^{2}}textrm{sech}left(frac{eta_{1}+bar{eta}_{1}+theta_{11}}{2}right)
; eta_{2R}rightarrow infty ; eta_{1} sim O(1)
end{equation}
with
$e^{theta_{11}}=a_{11}a_{1bar{1}}a_{1bar{2}}a_{2bar{1}}a_{bar{1}bar{2}}$.
calculus limits
add a comment |
What is the limit of following exponential function
$e^{dotimath k} $
when $k_{R}rightarrow -infty$ and $k_{R}rightarrow infty$?
where $k_{R}$ means real part of $k$.
In the book,
begin{equation}
r=frac{g_{1}+g_{2}}{1+f_{1}+f_{2}}, quad (1)
end{equation}
where
begin{eqnarray}
&& g_{1}=e^{eta_{1}+eta_{2}}, \
&& g_{2} = a_{12bar{1}}e^{eta_{1}+bar{eta}_{1}+eta_{2}}+
a_{12bar{2}}e^{eta_{1}+bar{eta}_{2}+eta_{2}}, \
&& f_{1} = a_{1bar{1}}e^{eta_{1}+bar{eta}_{1}} +
a_{1bar{2}}e^{eta_{1}+bar{eta}_{2}} +
a_{2bar{1}}e^{eta_{2}+bar{eta}_{1}} +
a_{2bar{2}}e^{eta_{2}+bar{eta}_{2}}, \
&& f_{2} =
a_{12bar{1}bar{2}}e^{eta_{1}+bar{eta}_{1}+eta_{2}+bar{eta}_{2}},
\
&& a_{ijbar{k}} = a_{ij} a_{ibar{k}} a_{jbar{k}}, quad
a_{ijbar{k}bar{l}} = a_{ij} a_{ibar{k}} a_{ibar{l}} a_{jbar{k}}
a_{jbar{l}} a_{bar{k}bar{l}}, \
&&a_{ij} = (p_{i}-p_{j})^{2}, ; a_{ibar{j}} =
frac{(p_{i}bar{p}_{j})^{2}}{(p_{i}+bar{p}_{j})^{2}}, ;
a_{bar{i}bar{j}} = (p_{i}-bar{p}_{j})^{2}
end{eqnarray}
where $eta_{i} = p_{i}^{-1}x + p_{i}t,; i=1,;2$. Asymptotic form
of equation (1):
begin{equation}
frac{p_{1R}}{|p_{1}|^{2}}textrm{sech}left(frac{eta_{1}+bar{eta}_{1}+theta_{11}}{2}right)
; eta_{2R}rightarrow infty ; eta_{1} sim O(1)
end{equation}
with
$e^{theta_{11}}=a_{11}a_{1bar{1}}a_{1bar{2}}a_{2bar{1}}a_{bar{1}bar{2}}$.
calculus limits
Hi Riaz: It's generally considered pretty rude at MSE to get an answer to your question, and then change the question so that the answers are no longer valid. If you're still interested in the modified version, please ask a new question. In the mean time, I've reverted your edit. You can view the old version in the edit history (just above this comment), so you won't have to type it all out again :P
– aleph_two
yesterday
add a comment |
What is the limit of following exponential function
$e^{dotimath k} $
when $k_{R}rightarrow -infty$ and $k_{R}rightarrow infty$?
where $k_{R}$ means real part of $k$.
In the book,
begin{equation}
r=frac{g_{1}+g_{2}}{1+f_{1}+f_{2}}, quad (1)
end{equation}
where
begin{eqnarray}
&& g_{1}=e^{eta_{1}+eta_{2}}, \
&& g_{2} = a_{12bar{1}}e^{eta_{1}+bar{eta}_{1}+eta_{2}}+
a_{12bar{2}}e^{eta_{1}+bar{eta}_{2}+eta_{2}}, \
&& f_{1} = a_{1bar{1}}e^{eta_{1}+bar{eta}_{1}} +
a_{1bar{2}}e^{eta_{1}+bar{eta}_{2}} +
a_{2bar{1}}e^{eta_{2}+bar{eta}_{1}} +
a_{2bar{2}}e^{eta_{2}+bar{eta}_{2}}, \
&& f_{2} =
a_{12bar{1}bar{2}}e^{eta_{1}+bar{eta}_{1}+eta_{2}+bar{eta}_{2}},
\
&& a_{ijbar{k}} = a_{ij} a_{ibar{k}} a_{jbar{k}}, quad
a_{ijbar{k}bar{l}} = a_{ij} a_{ibar{k}} a_{ibar{l}} a_{jbar{k}}
a_{jbar{l}} a_{bar{k}bar{l}}, \
&&a_{ij} = (p_{i}-p_{j})^{2}, ; a_{ibar{j}} =
frac{(p_{i}bar{p}_{j})^{2}}{(p_{i}+bar{p}_{j})^{2}}, ;
a_{bar{i}bar{j}} = (p_{i}-bar{p}_{j})^{2}
end{eqnarray}
where $eta_{i} = p_{i}^{-1}x + p_{i}t,; i=1,;2$. Asymptotic form
of equation (1):
begin{equation}
frac{p_{1R}}{|p_{1}|^{2}}textrm{sech}left(frac{eta_{1}+bar{eta}_{1}+theta_{11}}{2}right)
; eta_{2R}rightarrow infty ; eta_{1} sim O(1)
end{equation}
with
$e^{theta_{11}}=a_{11}a_{1bar{1}}a_{1bar{2}}a_{2bar{1}}a_{bar{1}bar{2}}$.
calculus limits
What is the limit of following exponential function
$e^{dotimath k} $
when $k_{R}rightarrow -infty$ and $k_{R}rightarrow infty$?
where $k_{R}$ means real part of $k$.
In the book,
begin{equation}
r=frac{g_{1}+g_{2}}{1+f_{1}+f_{2}}, quad (1)
end{equation}
where
begin{eqnarray}
&& g_{1}=e^{eta_{1}+eta_{2}}, \
&& g_{2} = a_{12bar{1}}e^{eta_{1}+bar{eta}_{1}+eta_{2}}+
a_{12bar{2}}e^{eta_{1}+bar{eta}_{2}+eta_{2}}, \
&& f_{1} = a_{1bar{1}}e^{eta_{1}+bar{eta}_{1}} +
a_{1bar{2}}e^{eta_{1}+bar{eta}_{2}} +
a_{2bar{1}}e^{eta_{2}+bar{eta}_{1}} +
a_{2bar{2}}e^{eta_{2}+bar{eta}_{2}}, \
&& f_{2} =
a_{12bar{1}bar{2}}e^{eta_{1}+bar{eta}_{1}+eta_{2}+bar{eta}_{2}},
\
&& a_{ijbar{k}} = a_{ij} a_{ibar{k}} a_{jbar{k}}, quad
a_{ijbar{k}bar{l}} = a_{ij} a_{ibar{k}} a_{ibar{l}} a_{jbar{k}}
a_{jbar{l}} a_{bar{k}bar{l}}, \
&&a_{ij} = (p_{i}-p_{j})^{2}, ; a_{ibar{j}} =
frac{(p_{i}bar{p}_{j})^{2}}{(p_{i}+bar{p}_{j})^{2}}, ;
a_{bar{i}bar{j}} = (p_{i}-bar{p}_{j})^{2}
end{eqnarray}
where $eta_{i} = p_{i}^{-1}x + p_{i}t,; i=1,;2$. Asymptotic form
of equation (1):
begin{equation}
frac{p_{1R}}{|p_{1}|^{2}}textrm{sech}left(frac{eta_{1}+bar{eta}_{1}+theta_{11}}{2}right)
; eta_{2R}rightarrow infty ; eta_{1} sim O(1)
end{equation}
with
$e^{theta_{11}}=a_{11}a_{1bar{1}}a_{1bar{2}}a_{2bar{1}}a_{bar{1}bar{2}}$.
calculus limits
calculus limits
edited Nov 20 '18 at 6:44
asked Nov 20 '18 at 5:57
A. Riaz
254
254
Hi Riaz: It's generally considered pretty rude at MSE to get an answer to your question, and then change the question so that the answers are no longer valid. If you're still interested in the modified version, please ask a new question. In the mean time, I've reverted your edit. You can view the old version in the edit history (just above this comment), so you won't have to type it all out again :P
– aleph_two
yesterday
add a comment |
Hi Riaz: It's generally considered pretty rude at MSE to get an answer to your question, and then change the question so that the answers are no longer valid. If you're still interested in the modified version, please ask a new question. In the mean time, I've reverted your edit. You can view the old version in the edit history (just above this comment), so you won't have to type it all out again :P
– aleph_two
yesterday
Hi Riaz: It's generally considered pretty rude at MSE to get an answer to your question, and then change the question so that the answers are no longer valid. If you're still interested in the modified version, please ask a new question. In the mean time, I've reverted your edit. You can view the old version in the edit history (just above this comment), so you won't have to type it all out again :P
– aleph_two
yesterday
Hi Riaz: It's generally considered pretty rude at MSE to get an answer to your question, and then change the question so that the answers are no longer valid. If you're still interested in the modified version, please ask a new question. In the mean time, I've reverted your edit. You can view the old version in the edit history (just above this comment), so you won't have to type it all out again :P
– aleph_two
yesterday
add a comment |
2 Answers
2
active
oldest
votes
If $k=a+ib $, then
begin{align}
e^{ik}
&=e^{ia-b}\
&=e^{-b}(cos (a)+isin (a))
end{align}
hence the limit doesn't exists for $atopminfty $.
@ Fabio, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:46
add a comment |
Let $k=x+iy$ with $x,y in mathbb R$. Then $e^{ik}=e^{ix}e^{-y}$
Let $x_n:=n pi$ for $n in mathbb N$. Then $e^{i x_n}=(-1)^n=e^{- ix_n}$.
This shows that the limits in question do not exist.
@ Fred, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:45
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005997%2fasymptotic-limit-of-exponential-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
If $k=a+ib $, then
begin{align}
e^{ik}
&=e^{ia-b}\
&=e^{-b}(cos (a)+isin (a))
end{align}
hence the limit doesn't exists for $atopminfty $.
@ Fabio, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:46
add a comment |
If $k=a+ib $, then
begin{align}
e^{ik}
&=e^{ia-b}\
&=e^{-b}(cos (a)+isin (a))
end{align}
hence the limit doesn't exists for $atopminfty $.
@ Fabio, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:46
add a comment |
If $k=a+ib $, then
begin{align}
e^{ik}
&=e^{ia-b}\
&=e^{-b}(cos (a)+isin (a))
end{align}
hence the limit doesn't exists for $atopminfty $.
If $k=a+ib $, then
begin{align}
e^{ik}
&=e^{ia-b}\
&=e^{-b}(cos (a)+isin (a))
end{align}
hence the limit doesn't exists for $atopminfty $.
answered Nov 20 '18 at 6:07
Fabio Lucchini
7,83811426
7,83811426
@ Fabio, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:46
add a comment |
@ Fabio, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:46
@ Fabio, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:46
@ Fabio, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:46
add a comment |
Let $k=x+iy$ with $x,y in mathbb R$. Then $e^{ik}=e^{ix}e^{-y}$
Let $x_n:=n pi$ for $n in mathbb N$. Then $e^{i x_n}=(-1)^n=e^{- ix_n}$.
This shows that the limits in question do not exist.
@ Fred, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:45
add a comment |
Let $k=x+iy$ with $x,y in mathbb R$. Then $e^{ik}=e^{ix}e^{-y}$
Let $x_n:=n pi$ for $n in mathbb N$. Then $e^{i x_n}=(-1)^n=e^{- ix_n}$.
This shows that the limits in question do not exist.
@ Fred, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:45
add a comment |
Let $k=x+iy$ with $x,y in mathbb R$. Then $e^{ik}=e^{ix}e^{-y}$
Let $x_n:=n pi$ for $n in mathbb N$. Then $e^{i x_n}=(-1)^n=e^{- ix_n}$.
This shows that the limits in question do not exist.
Let $k=x+iy$ with $x,y in mathbb R$. Then $e^{ik}=e^{ix}e^{-y}$
Let $x_n:=n pi$ for $n in mathbb N$. Then $e^{i x_n}=(-1)^n=e^{- ix_n}$.
This shows that the limits in question do not exist.
answered Nov 20 '18 at 6:08


Fred
44.2k1845
44.2k1845
@ Fred, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:45
add a comment |
@ Fred, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:45
@ Fred, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:45
@ Fred, if the limit do not exist, then how the answer can be obtained as described above
– A. Riaz
Nov 20 '18 at 6:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005997%2fasymptotic-limit-of-exponential-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Hi Riaz: It's generally considered pretty rude at MSE to get an answer to your question, and then change the question so that the answers are no longer valid. If you're still interested in the modified version, please ask a new question. In the mean time, I've reverted your edit. You can view the old version in the edit history (just above this comment), so you won't have to type it all out again :P
– aleph_two
yesterday