bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?












1














Question: How to get a good bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?



Context: I want to show that $frac{x+2y-2}{x^2+y^2+1}$ attains maximum and minimum value on $Bbb R^2$. So I need to find some compact set $K$ which contains the minimum and maximum, and show that on $Bbb R^2 - K$ , the absolute value of the function is small.



Attempt:



$biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert
leq frac{|x+2y-2|}{x^2+y^2+1} leq frac{sqrt{x^2+y^2}+2(sqrt{x^2+y^2})-2}{x^2+y^2+1} leq frac{3sqrt{x^2+y^2}-2}{x^2+y^2}
$



This is good enough to bound the function when $x^2+y^2$ is large, but is there a better way?



But I am not sure how to get rid of the $-2$ in the numerator.










share|cite|improve this question





























    1














    Question: How to get a good bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?



    Context: I want to show that $frac{x+2y-2}{x^2+y^2+1}$ attains maximum and minimum value on $Bbb R^2$. So I need to find some compact set $K$ which contains the minimum and maximum, and show that on $Bbb R^2 - K$ , the absolute value of the function is small.



    Attempt:



    $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert
    leq frac{|x+2y-2|}{x^2+y^2+1} leq frac{sqrt{x^2+y^2}+2(sqrt{x^2+y^2})-2}{x^2+y^2+1} leq frac{3sqrt{x^2+y^2}-2}{x^2+y^2}
    $



    This is good enough to bound the function when $x^2+y^2$ is large, but is there a better way?



    But I am not sure how to get rid of the $-2$ in the numerator.










    share|cite|improve this question



























      1












      1








      1


      2





      Question: How to get a good bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?



      Context: I want to show that $frac{x+2y-2}{x^2+y^2+1}$ attains maximum and minimum value on $Bbb R^2$. So I need to find some compact set $K$ which contains the minimum and maximum, and show that on $Bbb R^2 - K$ , the absolute value of the function is small.



      Attempt:



      $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert
      leq frac{|x+2y-2|}{x^2+y^2+1} leq frac{sqrt{x^2+y^2}+2(sqrt{x^2+y^2})-2}{x^2+y^2+1} leq frac{3sqrt{x^2+y^2}-2}{x^2+y^2}
      $



      This is good enough to bound the function when $x^2+y^2$ is large, but is there a better way?



      But I am not sure how to get rid of the $-2$ in the numerator.










      share|cite|improve this question















      Question: How to get a good bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?



      Context: I want to show that $frac{x+2y-2}{x^2+y^2+1}$ attains maximum and minimum value on $Bbb R^2$. So I need to find some compact set $K$ which contains the minimum and maximum, and show that on $Bbb R^2 - K$ , the absolute value of the function is small.



      Attempt:



      $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert
      leq frac{|x+2y-2|}{x^2+y^2+1} leq frac{sqrt{x^2+y^2}+2(sqrt{x^2+y^2})-2}{x^2+y^2+1} leq frac{3sqrt{x^2+y^2}-2}{x^2+y^2}
      $



      This is good enough to bound the function when $x^2+y^2$ is large, but is there a better way?



      But I am not sure how to get rid of the $-2$ in the numerator.







      real-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 20 '18 at 3:24









      Tianlalu

      3,09621038




      3,09621038










      asked Nov 20 '18 at 2:45









      eatfood

      1827




      1827






















          2 Answers
          2






          active

          oldest

          votes


















          3














          For the upper bound observe
          begin{align}
          c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
          =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
          end{align}

          for all $x, y$ iff
          begin{align}
          2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
          end{align}

          Hence it follows
          begin{align}
          x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
          end{align}

          for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.



          For the lower bound, we consider
          begin{align}
          c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
          =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
          end{align}

          which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
          begin{align}
          2+frac{4c^2-5}{4c}leq 0
          end{align}

          if $c in (-infty, -5/2]$. Hence
          begin{align}
          -frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
          end{align}






          share|cite|improve this answer





















          • +1 Wow nice technique
            – Ovi
            Nov 20 '18 at 5:09



















          0














          How about



          $$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$



          This should hold when $|x|, |y| > 1$.



          You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005868%2fbound-on-biggr-rvert-fracx2y-2x2y21-biggr-lvert%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3














            For the upper bound observe
            begin{align}
            c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
            =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
            end{align}

            for all $x, y$ iff
            begin{align}
            2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
            end{align}

            Hence it follows
            begin{align}
            x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
            end{align}

            for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.



            For the lower bound, we consider
            begin{align}
            c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
            =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
            end{align}

            which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
            begin{align}
            2+frac{4c^2-5}{4c}leq 0
            end{align}

            if $c in (-infty, -5/2]$. Hence
            begin{align}
            -frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
            end{align}






            share|cite|improve this answer





















            • +1 Wow nice technique
              – Ovi
              Nov 20 '18 at 5:09
















            3














            For the upper bound observe
            begin{align}
            c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
            =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
            end{align}

            for all $x, y$ iff
            begin{align}
            2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
            end{align}

            Hence it follows
            begin{align}
            x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
            end{align}

            for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.



            For the lower bound, we consider
            begin{align}
            c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
            =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
            end{align}

            which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
            begin{align}
            2+frac{4c^2-5}{4c}leq 0
            end{align}

            if $c in (-infty, -5/2]$. Hence
            begin{align}
            -frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
            end{align}






            share|cite|improve this answer





















            • +1 Wow nice technique
              – Ovi
              Nov 20 '18 at 5:09














            3












            3








            3






            For the upper bound observe
            begin{align}
            c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
            =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
            end{align}

            for all $x, y$ iff
            begin{align}
            2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
            end{align}

            Hence it follows
            begin{align}
            x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
            end{align}

            for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.



            For the lower bound, we consider
            begin{align}
            c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
            =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
            end{align}

            which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
            begin{align}
            2+frac{4c^2-5}{4c}leq 0
            end{align}

            if $c in (-infty, -5/2]$. Hence
            begin{align}
            -frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
            end{align}






            share|cite|improve this answer












            For the upper bound observe
            begin{align}
            c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
            =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
            end{align}

            for all $x, y$ iff
            begin{align}
            2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
            end{align}

            Hence it follows
            begin{align}
            x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
            end{align}

            for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.



            For the lower bound, we consider
            begin{align}
            c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
            =& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
            end{align}

            which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
            begin{align}
            2+frac{4c^2-5}{4c}leq 0
            end{align}

            if $c in (-infty, -5/2]$. Hence
            begin{align}
            -frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
            end{align}







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 20 '18 at 5:01









            Jacky Chong

            17.7k21128




            17.7k21128












            • +1 Wow nice technique
              – Ovi
              Nov 20 '18 at 5:09


















            • +1 Wow nice technique
              – Ovi
              Nov 20 '18 at 5:09
















            +1 Wow nice technique
            – Ovi
            Nov 20 '18 at 5:09




            +1 Wow nice technique
            – Ovi
            Nov 20 '18 at 5:09











            0














            How about



            $$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$



            This should hold when $|x|, |y| > 1$.



            You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.






            share|cite|improve this answer




























              0














              How about



              $$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$



              This should hold when $|x|, |y| > 1$.



              You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.






              share|cite|improve this answer


























                0












                0








                0






                How about



                $$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$



                This should hold when $|x|, |y| > 1$.



                You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.






                share|cite|improve this answer














                How about



                $$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$



                This should hold when $|x|, |y| > 1$.



                You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 20 '18 at 4:12

























                answered Nov 20 '18 at 4:01









                Ovi

                12.4k1038111




                12.4k1038111






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005868%2fbound-on-biggr-rvert-fracx2y-2x2y21-biggr-lvert%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith