bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?
Question: How to get a good bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?
Context: I want to show that $frac{x+2y-2}{x^2+y^2+1}$ attains maximum and minimum value on $Bbb R^2$. So I need to find some compact set $K$ which contains the minimum and maximum, and show that on $Bbb R^2 - K$ , the absolute value of the function is small.
Attempt:
$biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert
leq frac{|x+2y-2|}{x^2+y^2+1} leq frac{sqrt{x^2+y^2}+2(sqrt{x^2+y^2})-2}{x^2+y^2+1} leq frac{3sqrt{x^2+y^2}-2}{x^2+y^2}
$
This is good enough to bound the function when $x^2+y^2$ is large, but is there a better way?
But I am not sure how to get rid of the $-2$ in the numerator.
real-analysis
add a comment |
Question: How to get a good bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?
Context: I want to show that $frac{x+2y-2}{x^2+y^2+1}$ attains maximum and minimum value on $Bbb R^2$. So I need to find some compact set $K$ which contains the minimum and maximum, and show that on $Bbb R^2 - K$ , the absolute value of the function is small.
Attempt:
$biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert
leq frac{|x+2y-2|}{x^2+y^2+1} leq frac{sqrt{x^2+y^2}+2(sqrt{x^2+y^2})-2}{x^2+y^2+1} leq frac{3sqrt{x^2+y^2}-2}{x^2+y^2}
$
This is good enough to bound the function when $x^2+y^2$ is large, but is there a better way?
But I am not sure how to get rid of the $-2$ in the numerator.
real-analysis
add a comment |
Question: How to get a good bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?
Context: I want to show that $frac{x+2y-2}{x^2+y^2+1}$ attains maximum and minimum value on $Bbb R^2$. So I need to find some compact set $K$ which contains the minimum and maximum, and show that on $Bbb R^2 - K$ , the absolute value of the function is small.
Attempt:
$biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert
leq frac{|x+2y-2|}{x^2+y^2+1} leq frac{sqrt{x^2+y^2}+2(sqrt{x^2+y^2})-2}{x^2+y^2+1} leq frac{3sqrt{x^2+y^2}-2}{x^2+y^2}
$
This is good enough to bound the function when $x^2+y^2$ is large, but is there a better way?
But I am not sure how to get rid of the $-2$ in the numerator.
real-analysis
Question: How to get a good bound on $biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert $?
Context: I want to show that $frac{x+2y-2}{x^2+y^2+1}$ attains maximum and minimum value on $Bbb R^2$. So I need to find some compact set $K$ which contains the minimum and maximum, and show that on $Bbb R^2 - K$ , the absolute value of the function is small.
Attempt:
$biggrrvert frac{x+2y-2}{x^2+y^2+1} biggrlvert
leq frac{|x+2y-2|}{x^2+y^2+1} leq frac{sqrt{x^2+y^2}+2(sqrt{x^2+y^2})-2}{x^2+y^2+1} leq frac{3sqrt{x^2+y^2}-2}{x^2+y^2}
$
This is good enough to bound the function when $x^2+y^2$ is large, but is there a better way?
But I am not sure how to get rid of the $-2$ in the numerator.
real-analysis
real-analysis
edited Nov 20 '18 at 3:24
Tianlalu
3,09621038
3,09621038
asked Nov 20 '18 at 2:45
eatfood
1827
1827
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
For the upper bound observe
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
end{align}
for all $x, y$ iff
begin{align}
2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
end{align}
Hence it follows
begin{align}
x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
end{align}
for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.
For the lower bound, we consider
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
end{align}
which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
begin{align}
2+frac{4c^2-5}{4c}leq 0
end{align}
if $c in (-infty, -5/2]$. Hence
begin{align}
-frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
end{align}
+1 Wow nice technique
– Ovi
Nov 20 '18 at 5:09
add a comment |
How about
$$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$
This should hold when $|x|, |y| > 1$.
You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005868%2fbound-on-biggr-rvert-fracx2y-2x2y21-biggr-lvert%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
For the upper bound observe
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
end{align}
for all $x, y$ iff
begin{align}
2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
end{align}
Hence it follows
begin{align}
x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
end{align}
for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.
For the lower bound, we consider
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
end{align}
which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
begin{align}
2+frac{4c^2-5}{4c}leq 0
end{align}
if $c in (-infty, -5/2]$. Hence
begin{align}
-frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
end{align}
+1 Wow nice technique
– Ovi
Nov 20 '18 at 5:09
add a comment |
For the upper bound observe
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
end{align}
for all $x, y$ iff
begin{align}
2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
end{align}
Hence it follows
begin{align}
x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
end{align}
for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.
For the lower bound, we consider
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
end{align}
which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
begin{align}
2+frac{4c^2-5}{4c}leq 0
end{align}
if $c in (-infty, -5/2]$. Hence
begin{align}
-frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
end{align}
+1 Wow nice technique
– Ovi
Nov 20 '18 at 5:09
add a comment |
For the upper bound observe
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
end{align}
for all $x, y$ iff
begin{align}
2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
end{align}
Hence it follows
begin{align}
x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
end{align}
for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.
For the lower bound, we consider
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
end{align}
which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
begin{align}
2+frac{4c^2-5}{4c}leq 0
end{align}
if $c in (-infty, -5/2]$. Hence
begin{align}
-frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
end{align}
For the upper bound observe
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} geq 0
end{align}
for all $x, y$ iff
begin{align}
2+frac{4c^2-5}{4c}=0 Leftrightarrow c=frac{1}{2}.
end{align}
Hence it follows
begin{align}
x+2y-2 leq frac{1}{2}(x^2+y^2+1) Longleftrightarrow frac{x+2y-2}{x^2+y^2+1}leq frac{1}{2}
end{align}
for all $x, y$. Maximum is attained when $(x, y) = (1, 2)$.
For the lower bound, we consider
begin{align}
c(x^2+y^2+1)-x-2y+2 =& cleft(x^2-frac{1}{c}xright)+cleft(y^2-frac{2}{c}yright)+(2+c)\
=& cleft(x-frac{1}{2c} right)^2+cleft(y-frac{1}{c} right)^2+2+frac{4c^2-5}{4c} leq 0
end{align}
which needs to hold for all $x, y$. In particular, the inequality has to hold when $x=frac{1}{2c}$ and $y=frac{1}{c}$. Hence
begin{align}
2+frac{4c^2-5}{4c}leq 0
end{align}
if $c in (-infty, -5/2]$. Hence
begin{align}
-frac{5}{2} leq frac{x+2y-2}{x^2+y^2+1}.
end{align}
answered Nov 20 '18 at 5:01
Jacky Chong
17.7k21128
17.7k21128
+1 Wow nice technique
– Ovi
Nov 20 '18 at 5:09
add a comment |
+1 Wow nice technique
– Ovi
Nov 20 '18 at 5:09
+1 Wow nice technique
– Ovi
Nov 20 '18 at 5:09
+1 Wow nice technique
– Ovi
Nov 20 '18 at 5:09
add a comment |
How about
$$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$
This should hold when $|x|, |y| > 1$.
You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.
add a comment |
How about
$$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$
This should hold when $|x|, |y| > 1$.
You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.
add a comment |
How about
$$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$
This should hold when $|x|, |y| > 1$.
You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.
How about
$$left| dfrac {x+2y-2}{x^2+y^2+1} right| le dfrac {|x|+|2y|+|2|}{|x|+|y|+1} le dfrac {2|x|+2|y|+2}{|x|+|y|+1} = 2$$
This should hold when $|x|, |y| > 1$.
You can take $K$ to be the unit square. You can check that $fleft(- dfrac 14, - dfrac 12 right) < -2$, so indeed the function has an absolute minimum.
edited Nov 20 '18 at 4:12
answered Nov 20 '18 at 4:01


Ovi
12.4k1038111
12.4k1038111
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005868%2fbound-on-biggr-rvert-fracx2y-2x2y21-biggr-lvert%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown