Compute $mathbb{E}big[exp(XY+X)big]$ where $X, Y$ are independent uniformly distributed over $[0,1]$ r.v's.
$begingroup$
Compute $mathbb{E}big[exp(XY+X)big]$ where $X, Y$ are independent uniformly distributed over $[0,1]$ r.v's.
I first computed $mathbb{E}big[exp(XY+X)mid Xbig]$.
Because $X$ and $Y$ are independent then $$mathbb{E}big[exp(XY+X)mid Xbig] = phi(X),,$$
where $$phi(x) =mathbb{E}big[exp(xY+x)big] = int_0^1 exp(xy+x)dy = frac{exp x(exp x - 1)}{x}.$$
so $$mathbb{E}big[exp(XY+X)big] = int_0^1 frac{exp x(exp x - 1)}{x} dx,,$$
which I don't know how to compute.
Could someone check if I'm good till now and maybe help me continue? Thanks!
integration probability-theory random-variables conditional-expectation expected-value
$endgroup$
add a comment |
$begingroup$
Compute $mathbb{E}big[exp(XY+X)big]$ where $X, Y$ are independent uniformly distributed over $[0,1]$ r.v's.
I first computed $mathbb{E}big[exp(XY+X)mid Xbig]$.
Because $X$ and $Y$ are independent then $$mathbb{E}big[exp(XY+X)mid Xbig] = phi(X),,$$
where $$phi(x) =mathbb{E}big[exp(xY+x)big] = int_0^1 exp(xy+x)dy = frac{exp x(exp x - 1)}{x}.$$
so $$mathbb{E}big[exp(XY+X)big] = int_0^1 frac{exp x(exp x - 1)}{x} dx,,$$
which I don't know how to compute.
Could someone check if I'm good till now and maybe help me continue? Thanks!
integration probability-theory random-variables conditional-expectation expected-value
$endgroup$
1
$begingroup$
You are good :-) no mistake.
$endgroup$
– Math-fun
Jan 8 at 20:05
$begingroup$
You received two answers with different numerical results. Have you checked out the discrepancy?
$endgroup$
– herb steinberg
Jan 10 at 18:28
1
$begingroup$
@rapidracim I have corrected my answer and there is no discrepancy between the two results.
$endgroup$
– herb steinberg
Jan 14 at 20:46
$begingroup$
@herbsteinberg I checked your edit, I get it now.
$endgroup$
– rapidracim
Jan 14 at 21:39
add a comment |
$begingroup$
Compute $mathbb{E}big[exp(XY+X)big]$ where $X, Y$ are independent uniformly distributed over $[0,1]$ r.v's.
I first computed $mathbb{E}big[exp(XY+X)mid Xbig]$.
Because $X$ and $Y$ are independent then $$mathbb{E}big[exp(XY+X)mid Xbig] = phi(X),,$$
where $$phi(x) =mathbb{E}big[exp(xY+x)big] = int_0^1 exp(xy+x)dy = frac{exp x(exp x - 1)}{x}.$$
so $$mathbb{E}big[exp(XY+X)big] = int_0^1 frac{exp x(exp x - 1)}{x} dx,,$$
which I don't know how to compute.
Could someone check if I'm good till now and maybe help me continue? Thanks!
integration probability-theory random-variables conditional-expectation expected-value
$endgroup$
Compute $mathbb{E}big[exp(XY+X)big]$ where $X, Y$ are independent uniformly distributed over $[0,1]$ r.v's.
I first computed $mathbb{E}big[exp(XY+X)mid Xbig]$.
Because $X$ and $Y$ are independent then $$mathbb{E}big[exp(XY+X)mid Xbig] = phi(X),,$$
where $$phi(x) =mathbb{E}big[exp(xY+x)big] = int_0^1 exp(xy+x)dy = frac{exp x(exp x - 1)}{x}.$$
so $$mathbb{E}big[exp(XY+X)big] = int_0^1 frac{exp x(exp x - 1)}{x} dx,,$$
which I don't know how to compute.
Could someone check if I'm good till now and maybe help me continue? Thanks!
integration probability-theory random-variables conditional-expectation expected-value
integration probability-theory random-variables conditional-expectation expected-value
edited Jan 8 at 22:06
Batominovski
1
1
asked Jan 8 at 19:57
rapidracimrapidracim
1,6141319
1,6141319
1
$begingroup$
You are good :-) no mistake.
$endgroup$
– Math-fun
Jan 8 at 20:05
$begingroup$
You received two answers with different numerical results. Have you checked out the discrepancy?
$endgroup$
– herb steinberg
Jan 10 at 18:28
1
$begingroup$
@rapidracim I have corrected my answer and there is no discrepancy between the two results.
$endgroup$
– herb steinberg
Jan 14 at 20:46
$begingroup$
@herbsteinberg I checked your edit, I get it now.
$endgroup$
– rapidracim
Jan 14 at 21:39
add a comment |
1
$begingroup$
You are good :-) no mistake.
$endgroup$
– Math-fun
Jan 8 at 20:05
$begingroup$
You received two answers with different numerical results. Have you checked out the discrepancy?
$endgroup$
– herb steinberg
Jan 10 at 18:28
1
$begingroup$
@rapidracim I have corrected my answer and there is no discrepancy between the two results.
$endgroup$
– herb steinberg
Jan 14 at 20:46
$begingroup$
@herbsteinberg I checked your edit, I get it now.
$endgroup$
– rapidracim
Jan 14 at 21:39
1
1
$begingroup$
You are good :-) no mistake.
$endgroup$
– Math-fun
Jan 8 at 20:05
$begingroup$
You are good :-) no mistake.
$endgroup$
– Math-fun
Jan 8 at 20:05
$begingroup$
You received two answers with different numerical results. Have you checked out the discrepancy?
$endgroup$
– herb steinberg
Jan 10 at 18:28
$begingroup$
You received two answers with different numerical results. Have you checked out the discrepancy?
$endgroup$
– herb steinberg
Jan 10 at 18:28
1
1
$begingroup$
@rapidracim I have corrected my answer and there is no discrepancy between the two results.
$endgroup$
– herb steinberg
Jan 14 at 20:46
$begingroup$
@rapidracim I have corrected my answer and there is no discrepancy between the two results.
$endgroup$
– herb steinberg
Jan 14 at 20:46
$begingroup$
@herbsteinberg I checked your edit, I get it now.
$endgroup$
– rapidracim
Jan 14 at 21:39
$begingroup$
@herbsteinberg I checked your edit, I get it now.
$endgroup$
– rapidracim
Jan 14 at 21:39
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You have done great so far. But I dont think there is an elementary expression for the last integral. But you can note that the exponential integral $operatorname{Ei}$ is given by
$$operatorname{Ei}(t)=mathrel{-!!!!!!;!!int}_{-infty}^{t}frac{e^{s}}{s}ds.$$
(Here $mathrel{-!!!!!;!!int}$ is the Cauchy principal value integral.)
In other words,
$$intfrac{e^{s}}{s}ds=operatorname{Ei}(s)+C.$$
This also shows that
$$intfrac{e^{ks}}{s}ds=operatorname{Ei}(ks)+C.$$
The required integral is
begin{align}I&=int_0^1frac{e^x(e^x-1)}{x}dx=lim_{epsilonsearrow0}int_{epsilon}^1left(frac{e^{2x}}{x}dx-int_epsilon^1frac{e^x}{x}dxright)\
&=lim_{epsilonsearrow0}Big(big(operatorname{Ei}(2)-operatorname{Ei}(2epsilon)big)-big(operatorname{Ei}(1)-operatorname{Ei}(epsilon)big)Big)\
&=operatorname{Ei}(2)-operatorname{Ei}(1)-lim_{epsilonsearrow0}big(operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)big).end{align}
Now
$$operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)=int_{epsilon}^{2epsilon}frac{e^s}{s}ds=int_epsilon^{2epsilon}frac{1+O(epsilon)}{s}ds=int_{epsilon}^{2epsilon}frac{ds}{s}+O(epsilon)=ln 2+O(epsilon).$$
This gives
$$I=operatorname{Ei}(2)-operatorname{Ei}(1)-ln2approx 2.366.$$
$endgroup$
add a comment |
$begingroup$
You can't get an explicit answer. However let $u=exp(x)$ then $du=exp(x)dx$ and your integral becomes $int_1^e frac{u-1}{ln(u)}du=text{li}(e^2)-text{li}(e)=int_e^{e^2}frac{1}{ln(u)}du$. Unfortunately there is no explicit formula for $text{li}(u)$.
I calculated this result and got I=3.0591165.
In addition, due to the singularity of the integrand at $u=1$, it is necessary to subtract $lim_{epsilonto 0}int_{(1+epsilon)}^{(1+epsilon)^2}frac{1}{ln(u)}du=ln(2)=0.693147181$
Net result$=2.365969319$.
$endgroup$
$begingroup$
@ Batominovski What was the edit? I didn't see any changes!
$endgroup$
– herb steinberg
Jan 8 at 22:34
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066648%2fcompute-mathbbe-big-expxyx-big-where-x-y-are-independent-uniformly%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have done great so far. But I dont think there is an elementary expression for the last integral. But you can note that the exponential integral $operatorname{Ei}$ is given by
$$operatorname{Ei}(t)=mathrel{-!!!!!!;!!int}_{-infty}^{t}frac{e^{s}}{s}ds.$$
(Here $mathrel{-!!!!!;!!int}$ is the Cauchy principal value integral.)
In other words,
$$intfrac{e^{s}}{s}ds=operatorname{Ei}(s)+C.$$
This also shows that
$$intfrac{e^{ks}}{s}ds=operatorname{Ei}(ks)+C.$$
The required integral is
begin{align}I&=int_0^1frac{e^x(e^x-1)}{x}dx=lim_{epsilonsearrow0}int_{epsilon}^1left(frac{e^{2x}}{x}dx-int_epsilon^1frac{e^x}{x}dxright)\
&=lim_{epsilonsearrow0}Big(big(operatorname{Ei}(2)-operatorname{Ei}(2epsilon)big)-big(operatorname{Ei}(1)-operatorname{Ei}(epsilon)big)Big)\
&=operatorname{Ei}(2)-operatorname{Ei}(1)-lim_{epsilonsearrow0}big(operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)big).end{align}
Now
$$operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)=int_{epsilon}^{2epsilon}frac{e^s}{s}ds=int_epsilon^{2epsilon}frac{1+O(epsilon)}{s}ds=int_{epsilon}^{2epsilon}frac{ds}{s}+O(epsilon)=ln 2+O(epsilon).$$
This gives
$$I=operatorname{Ei}(2)-operatorname{Ei}(1)-ln2approx 2.366.$$
$endgroup$
add a comment |
$begingroup$
You have done great so far. But I dont think there is an elementary expression for the last integral. But you can note that the exponential integral $operatorname{Ei}$ is given by
$$operatorname{Ei}(t)=mathrel{-!!!!!!;!!int}_{-infty}^{t}frac{e^{s}}{s}ds.$$
(Here $mathrel{-!!!!!;!!int}$ is the Cauchy principal value integral.)
In other words,
$$intfrac{e^{s}}{s}ds=operatorname{Ei}(s)+C.$$
This also shows that
$$intfrac{e^{ks}}{s}ds=operatorname{Ei}(ks)+C.$$
The required integral is
begin{align}I&=int_0^1frac{e^x(e^x-1)}{x}dx=lim_{epsilonsearrow0}int_{epsilon}^1left(frac{e^{2x}}{x}dx-int_epsilon^1frac{e^x}{x}dxright)\
&=lim_{epsilonsearrow0}Big(big(operatorname{Ei}(2)-operatorname{Ei}(2epsilon)big)-big(operatorname{Ei}(1)-operatorname{Ei}(epsilon)big)Big)\
&=operatorname{Ei}(2)-operatorname{Ei}(1)-lim_{epsilonsearrow0}big(operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)big).end{align}
Now
$$operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)=int_{epsilon}^{2epsilon}frac{e^s}{s}ds=int_epsilon^{2epsilon}frac{1+O(epsilon)}{s}ds=int_{epsilon}^{2epsilon}frac{ds}{s}+O(epsilon)=ln 2+O(epsilon).$$
This gives
$$I=operatorname{Ei}(2)-operatorname{Ei}(1)-ln2approx 2.366.$$
$endgroup$
add a comment |
$begingroup$
You have done great so far. But I dont think there is an elementary expression for the last integral. But you can note that the exponential integral $operatorname{Ei}$ is given by
$$operatorname{Ei}(t)=mathrel{-!!!!!!;!!int}_{-infty}^{t}frac{e^{s}}{s}ds.$$
(Here $mathrel{-!!!!!;!!int}$ is the Cauchy principal value integral.)
In other words,
$$intfrac{e^{s}}{s}ds=operatorname{Ei}(s)+C.$$
This also shows that
$$intfrac{e^{ks}}{s}ds=operatorname{Ei}(ks)+C.$$
The required integral is
begin{align}I&=int_0^1frac{e^x(e^x-1)}{x}dx=lim_{epsilonsearrow0}int_{epsilon}^1left(frac{e^{2x}}{x}dx-int_epsilon^1frac{e^x}{x}dxright)\
&=lim_{epsilonsearrow0}Big(big(operatorname{Ei}(2)-operatorname{Ei}(2epsilon)big)-big(operatorname{Ei}(1)-operatorname{Ei}(epsilon)big)Big)\
&=operatorname{Ei}(2)-operatorname{Ei}(1)-lim_{epsilonsearrow0}big(operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)big).end{align}
Now
$$operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)=int_{epsilon}^{2epsilon}frac{e^s}{s}ds=int_epsilon^{2epsilon}frac{1+O(epsilon)}{s}ds=int_{epsilon}^{2epsilon}frac{ds}{s}+O(epsilon)=ln 2+O(epsilon).$$
This gives
$$I=operatorname{Ei}(2)-operatorname{Ei}(1)-ln2approx 2.366.$$
$endgroup$
You have done great so far. But I dont think there is an elementary expression for the last integral. But you can note that the exponential integral $operatorname{Ei}$ is given by
$$operatorname{Ei}(t)=mathrel{-!!!!!!;!!int}_{-infty}^{t}frac{e^{s}}{s}ds.$$
(Here $mathrel{-!!!!!;!!int}$ is the Cauchy principal value integral.)
In other words,
$$intfrac{e^{s}}{s}ds=operatorname{Ei}(s)+C.$$
This also shows that
$$intfrac{e^{ks}}{s}ds=operatorname{Ei}(ks)+C.$$
The required integral is
begin{align}I&=int_0^1frac{e^x(e^x-1)}{x}dx=lim_{epsilonsearrow0}int_{epsilon}^1left(frac{e^{2x}}{x}dx-int_epsilon^1frac{e^x}{x}dxright)\
&=lim_{epsilonsearrow0}Big(big(operatorname{Ei}(2)-operatorname{Ei}(2epsilon)big)-big(operatorname{Ei}(1)-operatorname{Ei}(epsilon)big)Big)\
&=operatorname{Ei}(2)-operatorname{Ei}(1)-lim_{epsilonsearrow0}big(operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)big).end{align}
Now
$$operatorname{Ei}(2epsilon)-operatorname{Ei}(epsilon)=int_{epsilon}^{2epsilon}frac{e^s}{s}ds=int_epsilon^{2epsilon}frac{1+O(epsilon)}{s}ds=int_{epsilon}^{2epsilon}frac{ds}{s}+O(epsilon)=ln 2+O(epsilon).$$
This gives
$$I=operatorname{Ei}(2)-operatorname{Ei}(1)-ln2approx 2.366.$$
edited Jan 8 at 20:58
answered Jan 8 at 20:50
user614671
add a comment |
add a comment |
$begingroup$
You can't get an explicit answer. However let $u=exp(x)$ then $du=exp(x)dx$ and your integral becomes $int_1^e frac{u-1}{ln(u)}du=text{li}(e^2)-text{li}(e)=int_e^{e^2}frac{1}{ln(u)}du$. Unfortunately there is no explicit formula for $text{li}(u)$.
I calculated this result and got I=3.0591165.
In addition, due to the singularity of the integrand at $u=1$, it is necessary to subtract $lim_{epsilonto 0}int_{(1+epsilon)}^{(1+epsilon)^2}frac{1}{ln(u)}du=ln(2)=0.693147181$
Net result$=2.365969319$.
$endgroup$
$begingroup$
@ Batominovski What was the edit? I didn't see any changes!
$endgroup$
– herb steinberg
Jan 8 at 22:34
add a comment |
$begingroup$
You can't get an explicit answer. However let $u=exp(x)$ then $du=exp(x)dx$ and your integral becomes $int_1^e frac{u-1}{ln(u)}du=text{li}(e^2)-text{li}(e)=int_e^{e^2}frac{1}{ln(u)}du$. Unfortunately there is no explicit formula for $text{li}(u)$.
I calculated this result and got I=3.0591165.
In addition, due to the singularity of the integrand at $u=1$, it is necessary to subtract $lim_{epsilonto 0}int_{(1+epsilon)}^{(1+epsilon)^2}frac{1}{ln(u)}du=ln(2)=0.693147181$
Net result$=2.365969319$.
$endgroup$
$begingroup$
@ Batominovski What was the edit? I didn't see any changes!
$endgroup$
– herb steinberg
Jan 8 at 22:34
add a comment |
$begingroup$
You can't get an explicit answer. However let $u=exp(x)$ then $du=exp(x)dx$ and your integral becomes $int_1^e frac{u-1}{ln(u)}du=text{li}(e^2)-text{li}(e)=int_e^{e^2}frac{1}{ln(u)}du$. Unfortunately there is no explicit formula for $text{li}(u)$.
I calculated this result and got I=3.0591165.
In addition, due to the singularity of the integrand at $u=1$, it is necessary to subtract $lim_{epsilonto 0}int_{(1+epsilon)}^{(1+epsilon)^2}frac{1}{ln(u)}du=ln(2)=0.693147181$
Net result$=2.365969319$.
$endgroup$
You can't get an explicit answer. However let $u=exp(x)$ then $du=exp(x)dx$ and your integral becomes $int_1^e frac{u-1}{ln(u)}du=text{li}(e^2)-text{li}(e)=int_e^{e^2}frac{1}{ln(u)}du$. Unfortunately there is no explicit formula for $text{li}(u)$.
I calculated this result and got I=3.0591165.
In addition, due to the singularity of the integrand at $u=1$, it is necessary to subtract $lim_{epsilonto 0}int_{(1+epsilon)}^{(1+epsilon)^2}frac{1}{ln(u)}du=ln(2)=0.693147181$
Net result$=2.365969319$.
edited Jan 14 at 20:44
answered Jan 8 at 21:06
herb steinbergherb steinberg
2,5932310
2,5932310
$begingroup$
@ Batominovski What was the edit? I didn't see any changes!
$endgroup$
– herb steinberg
Jan 8 at 22:34
add a comment |
$begingroup$
@ Batominovski What was the edit? I didn't see any changes!
$endgroup$
– herb steinberg
Jan 8 at 22:34
$begingroup$
@ Batominovski What was the edit? I didn't see any changes!
$endgroup$
– herb steinberg
Jan 8 at 22:34
$begingroup$
@ Batominovski What was the edit? I didn't see any changes!
$endgroup$
– herb steinberg
Jan 8 at 22:34
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066648%2fcompute-mathbbe-big-expxyx-big-where-x-y-are-independent-uniformly%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You are good :-) no mistake.
$endgroup$
– Math-fun
Jan 8 at 20:05
$begingroup$
You received two answers with different numerical results. Have you checked out the discrepancy?
$endgroup$
– herb steinberg
Jan 10 at 18:28
1
$begingroup$
@rapidracim I have corrected my answer and there is no discrepancy between the two results.
$endgroup$
– herb steinberg
Jan 14 at 20:46
$begingroup$
@herbsteinberg I checked your edit, I get it now.
$endgroup$
– rapidracim
Jan 14 at 21:39