surface area with integrals
$begingroup$
I'm working on a problem in my textbook and am confused on how to set up the integral.
"Find the surface area of the part of the hyperbolic paraboloid $z= x^2 - y^2$ that lies in the first octant and is inside the cylinder $x^2 +y^2 = 1$.
I have figured out the equation to integrate: $sqrt{4x^2+4y^2+1}$ from finding the partial derivatives and taking the magnitude of the cross product.
integration multivariable-calculus surface-integrals
$endgroup$
add a comment |
$begingroup$
I'm working on a problem in my textbook and am confused on how to set up the integral.
"Find the surface area of the part of the hyperbolic paraboloid $z= x^2 - y^2$ that lies in the first octant and is inside the cylinder $x^2 +y^2 = 1$.
I have figured out the equation to integrate: $sqrt{4x^2+4y^2+1}$ from finding the partial derivatives and taking the magnitude of the cross product.
integration multivariable-calculus surface-integrals
$endgroup$
add a comment |
$begingroup$
I'm working on a problem in my textbook and am confused on how to set up the integral.
"Find the surface area of the part of the hyperbolic paraboloid $z= x^2 - y^2$ that lies in the first octant and is inside the cylinder $x^2 +y^2 = 1$.
I have figured out the equation to integrate: $sqrt{4x^2+4y^2+1}$ from finding the partial derivatives and taking the magnitude of the cross product.
integration multivariable-calculus surface-integrals
$endgroup$
I'm working on a problem in my textbook and am confused on how to set up the integral.
"Find the surface area of the part of the hyperbolic paraboloid $z= x^2 - y^2$ that lies in the first octant and is inside the cylinder $x^2 +y^2 = 1$.
I have figured out the equation to integrate: $sqrt{4x^2+4y^2+1}$ from finding the partial derivatives and taking the magnitude of the cross product.
integration multivariable-calculus surface-integrals
integration multivariable-calculus surface-integrals
edited Jan 8 at 21:47
user376343
3,4233826
3,4233826
asked Jan 8 at 21:43
marbeiiimarbeiii
113
113
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You need to parameterize the integration region. One possible choice is to take
$$mathbf s(u,v)=(x(u,v),y(u,v),z(u,v))=(ucos v,usin v,u^2cos2v)$$
with $0le ule1$ and $0le vle2pi$. We took a cue to use polar/cylindrical coordinates from the cylinder's equation, $x^2+y^2=1$. Then the $z$ coordinate is determined by the equation of the surface,
$$z=x^2-y^2=u^2cos^2v-u^2sin^2v=u^2cos2v$$
Then the surface element is
$$mathrm dS=left|frac{partialmathbf s}{partial u}timesfrac{partialmathbf s}{partial v}right|,mathrm du,mathrm dv=usqrt{1+4u^2},mathrm du,mathrm dv$$
The area of the region of interest (call it $R$) is given by the surface integral,
$$iint_Rmathrm dS=int_{v=0}^{v=2pi}int_{u=0}^{u=1}usqrt{1+4u^2},mathrm du,mathrm dv=frac{(5sqrt5-1)pi}6$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066759%2fsurface-area-with-integrals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You need to parameterize the integration region. One possible choice is to take
$$mathbf s(u,v)=(x(u,v),y(u,v),z(u,v))=(ucos v,usin v,u^2cos2v)$$
with $0le ule1$ and $0le vle2pi$. We took a cue to use polar/cylindrical coordinates from the cylinder's equation, $x^2+y^2=1$. Then the $z$ coordinate is determined by the equation of the surface,
$$z=x^2-y^2=u^2cos^2v-u^2sin^2v=u^2cos2v$$
Then the surface element is
$$mathrm dS=left|frac{partialmathbf s}{partial u}timesfrac{partialmathbf s}{partial v}right|,mathrm du,mathrm dv=usqrt{1+4u^2},mathrm du,mathrm dv$$
The area of the region of interest (call it $R$) is given by the surface integral,
$$iint_Rmathrm dS=int_{v=0}^{v=2pi}int_{u=0}^{u=1}usqrt{1+4u^2},mathrm du,mathrm dv=frac{(5sqrt5-1)pi}6$$
$endgroup$
add a comment |
$begingroup$
You need to parameterize the integration region. One possible choice is to take
$$mathbf s(u,v)=(x(u,v),y(u,v),z(u,v))=(ucos v,usin v,u^2cos2v)$$
with $0le ule1$ and $0le vle2pi$. We took a cue to use polar/cylindrical coordinates from the cylinder's equation, $x^2+y^2=1$. Then the $z$ coordinate is determined by the equation of the surface,
$$z=x^2-y^2=u^2cos^2v-u^2sin^2v=u^2cos2v$$
Then the surface element is
$$mathrm dS=left|frac{partialmathbf s}{partial u}timesfrac{partialmathbf s}{partial v}right|,mathrm du,mathrm dv=usqrt{1+4u^2},mathrm du,mathrm dv$$
The area of the region of interest (call it $R$) is given by the surface integral,
$$iint_Rmathrm dS=int_{v=0}^{v=2pi}int_{u=0}^{u=1}usqrt{1+4u^2},mathrm du,mathrm dv=frac{(5sqrt5-1)pi}6$$
$endgroup$
add a comment |
$begingroup$
You need to parameterize the integration region. One possible choice is to take
$$mathbf s(u,v)=(x(u,v),y(u,v),z(u,v))=(ucos v,usin v,u^2cos2v)$$
with $0le ule1$ and $0le vle2pi$. We took a cue to use polar/cylindrical coordinates from the cylinder's equation, $x^2+y^2=1$. Then the $z$ coordinate is determined by the equation of the surface,
$$z=x^2-y^2=u^2cos^2v-u^2sin^2v=u^2cos2v$$
Then the surface element is
$$mathrm dS=left|frac{partialmathbf s}{partial u}timesfrac{partialmathbf s}{partial v}right|,mathrm du,mathrm dv=usqrt{1+4u^2},mathrm du,mathrm dv$$
The area of the region of interest (call it $R$) is given by the surface integral,
$$iint_Rmathrm dS=int_{v=0}^{v=2pi}int_{u=0}^{u=1}usqrt{1+4u^2},mathrm du,mathrm dv=frac{(5sqrt5-1)pi}6$$
$endgroup$
You need to parameterize the integration region. One possible choice is to take
$$mathbf s(u,v)=(x(u,v),y(u,v),z(u,v))=(ucos v,usin v,u^2cos2v)$$
with $0le ule1$ and $0le vle2pi$. We took a cue to use polar/cylindrical coordinates from the cylinder's equation, $x^2+y^2=1$. Then the $z$ coordinate is determined by the equation of the surface,
$$z=x^2-y^2=u^2cos^2v-u^2sin^2v=u^2cos2v$$
Then the surface element is
$$mathrm dS=left|frac{partialmathbf s}{partial u}timesfrac{partialmathbf s}{partial v}right|,mathrm du,mathrm dv=usqrt{1+4u^2},mathrm du,mathrm dv$$
The area of the region of interest (call it $R$) is given by the surface integral,
$$iint_Rmathrm dS=int_{v=0}^{v=2pi}int_{u=0}^{u=1}usqrt{1+4u^2},mathrm du,mathrm dv=frac{(5sqrt5-1)pi}6$$
answered Jan 8 at 21:58
user170231user170231
4,04711429
4,04711429
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066759%2fsurface-area-with-integrals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown