Why is $(f_n)_{ninmathbb{N}}$ with $f_n :[0,1]rightarrowmathbb{R}, f_n(x)=x^n$ not uniformly convergent?...












0












$begingroup$



This question already has an answer here:




  • Prove $x^n$ is not uniformly convergent

    2 answers




If I choose $f:[0,1]rightarrow mathbb{R}$ with $f(1)=1$ and otherwise $f(x)=0$ then $||f_n-f||_{[0,1]}rightarrow0$ therefore it is uniformly convergent and because it is uniformly convergent $f$ would have to be continuous but it is not, where is the mistake?










share|cite|improve this question











$endgroup$



marked as duplicate by RRL real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 8 at 23:19


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    Since $lim_n f_n$ is not continuous, it cannot be the uniform limit of any sequence of continuous functions.
    $endgroup$
    – copper.hat
    Jan 8 at 21:58
















0












$begingroup$



This question already has an answer here:




  • Prove $x^n$ is not uniformly convergent

    2 answers




If I choose $f:[0,1]rightarrow mathbb{R}$ with $f(1)=1$ and otherwise $f(x)=0$ then $||f_n-f||_{[0,1]}rightarrow0$ therefore it is uniformly convergent and because it is uniformly convergent $f$ would have to be continuous but it is not, where is the mistake?










share|cite|improve this question











$endgroup$



marked as duplicate by RRL real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 8 at 23:19


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    Since $lim_n f_n$ is not continuous, it cannot be the uniform limit of any sequence of continuous functions.
    $endgroup$
    – copper.hat
    Jan 8 at 21:58














0












0








0





$begingroup$



This question already has an answer here:




  • Prove $x^n$ is not uniformly convergent

    2 answers




If I choose $f:[0,1]rightarrow mathbb{R}$ with $f(1)=1$ and otherwise $f(x)=0$ then $||f_n-f||_{[0,1]}rightarrow0$ therefore it is uniformly convergent and because it is uniformly convergent $f$ would have to be continuous but it is not, where is the mistake?










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • Prove $x^n$ is not uniformly convergent

    2 answers




If I choose $f:[0,1]rightarrow mathbb{R}$ with $f(1)=1$ and otherwise $f(x)=0$ then $||f_n-f||_{[0,1]}rightarrow0$ therefore it is uniformly convergent and because it is uniformly convergent $f$ would have to be continuous but it is not, where is the mistake?





This question already has an answer here:




  • Prove $x^n$ is not uniformly convergent

    2 answers








real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 21:48









Bernard

120k740113




120k740113










asked Jan 8 at 21:46









RM777RM777

33112




33112




marked as duplicate by RRL real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 8 at 23:19


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by RRL real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 8 at 23:19


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    Since $lim_n f_n$ is not continuous, it cannot be the uniform limit of any sequence of continuous functions.
    $endgroup$
    – copper.hat
    Jan 8 at 21:58


















  • $begingroup$
    Since $lim_n f_n$ is not continuous, it cannot be the uniform limit of any sequence of continuous functions.
    $endgroup$
    – copper.hat
    Jan 8 at 21:58
















$begingroup$
Since $lim_n f_n$ is not continuous, it cannot be the uniform limit of any sequence of continuous functions.
$endgroup$
– copper.hat
Jan 8 at 21:58




$begingroup$
Since $lim_n f_n$ is not continuous, it cannot be the uniform limit of any sequence of continuous functions.
$endgroup$
– copper.hat
Jan 8 at 21:58










1 Answer
1






active

oldest

votes


















2












$begingroup$

It is not uniformly convergent. For each $ninmathbb{N}$ you can choose $x=frac{1}{sqrt[n]{2}}$ and get $|f_n(x)-f(x)|geqfrac{1}{2}$. So it doesn't matter how far you go in the sequence, the distance will never be less than $frac{1}{2}$ for all $x$.






share|cite|improve this answer









$endgroup$




















    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    It is not uniformly convergent. For each $ninmathbb{N}$ you can choose $x=frac{1}{sqrt[n]{2}}$ and get $|f_n(x)-f(x)|geqfrac{1}{2}$. So it doesn't matter how far you go in the sequence, the distance will never be less than $frac{1}{2}$ for all $x$.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      It is not uniformly convergent. For each $ninmathbb{N}$ you can choose $x=frac{1}{sqrt[n]{2}}$ and get $|f_n(x)-f(x)|geqfrac{1}{2}$. So it doesn't matter how far you go in the sequence, the distance will never be less than $frac{1}{2}$ for all $x$.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        It is not uniformly convergent. For each $ninmathbb{N}$ you can choose $x=frac{1}{sqrt[n]{2}}$ and get $|f_n(x)-f(x)|geqfrac{1}{2}$. So it doesn't matter how far you go in the sequence, the distance will never be less than $frac{1}{2}$ for all $x$.






        share|cite|improve this answer









        $endgroup$



        It is not uniformly convergent. For each $ninmathbb{N}$ you can choose $x=frac{1}{sqrt[n]{2}}$ and get $|f_n(x)-f(x)|geqfrac{1}{2}$. So it doesn't matter how far you go in the sequence, the distance will never be less than $frac{1}{2}$ for all $x$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 8 at 21:52









        MarkMark

        6,848416




        6,848416















            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]