Finding roots using Euler's formula












2












$begingroup$


I'm going through past exam papers and have come accross the following question:



find all solutions to $z^5=2-2i $



for this question I was going to use Euler's formula:



$ e^{i(2k+1)pi}=-1 $



$ -2e^{i(2k+1)pi}=2 $



$ -2e^{i(2k+1)pi}-2i=2-2i $



$ z^5 =-2e^{i(2k+1)pi}-2i$



$ z = -2^{frac 1 5}e^{frac {i(2k+1)pi}{5}}-2i^{frac 1 5}$



I'll then sub in k=0,1,2,3,4



am I on the right track here?
thanks!










share|cite|improve this question









$endgroup$












  • $begingroup$
    Try writing $2-2i$ in the $e^{x}$ form first
    $endgroup$
    – TheMathsGeek
    Jan 5 '17 at 12:47






  • 2




    $begingroup$
    $(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
    $endgroup$
    – ajotatxe
    Jan 5 '17 at 12:47
















2












$begingroup$


I'm going through past exam papers and have come accross the following question:



find all solutions to $z^5=2-2i $



for this question I was going to use Euler's formula:



$ e^{i(2k+1)pi}=-1 $



$ -2e^{i(2k+1)pi}=2 $



$ -2e^{i(2k+1)pi}-2i=2-2i $



$ z^5 =-2e^{i(2k+1)pi}-2i$



$ z = -2^{frac 1 5}e^{frac {i(2k+1)pi}{5}}-2i^{frac 1 5}$



I'll then sub in k=0,1,2,3,4



am I on the right track here?
thanks!










share|cite|improve this question









$endgroup$












  • $begingroup$
    Try writing $2-2i$ in the $e^{x}$ form first
    $endgroup$
    – TheMathsGeek
    Jan 5 '17 at 12:47






  • 2




    $begingroup$
    $(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
    $endgroup$
    – ajotatxe
    Jan 5 '17 at 12:47














2












2








2





$begingroup$


I'm going through past exam papers and have come accross the following question:



find all solutions to $z^5=2-2i $



for this question I was going to use Euler's formula:



$ e^{i(2k+1)pi}=-1 $



$ -2e^{i(2k+1)pi}=2 $



$ -2e^{i(2k+1)pi}-2i=2-2i $



$ z^5 =-2e^{i(2k+1)pi}-2i$



$ z = -2^{frac 1 5}e^{frac {i(2k+1)pi}{5}}-2i^{frac 1 5}$



I'll then sub in k=0,1,2,3,4



am I on the right track here?
thanks!










share|cite|improve this question









$endgroup$




I'm going through past exam papers and have come accross the following question:



find all solutions to $z^5=2-2i $



for this question I was going to use Euler's formula:



$ e^{i(2k+1)pi}=-1 $



$ -2e^{i(2k+1)pi}=2 $



$ -2e^{i(2k+1)pi}-2i=2-2i $



$ z^5 =-2e^{i(2k+1)pi}-2i$



$ z = -2^{frac 1 5}e^{frac {i(2k+1)pi}{5}}-2i^{frac 1 5}$



I'll then sub in k=0,1,2,3,4



am I on the right track here?
thanks!







complex-analysis complex-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 5 '17 at 12:42









user6122081user6122081

758




758












  • $begingroup$
    Try writing $2-2i$ in the $e^{x}$ form first
    $endgroup$
    – TheMathsGeek
    Jan 5 '17 at 12:47






  • 2




    $begingroup$
    $(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
    $endgroup$
    – ajotatxe
    Jan 5 '17 at 12:47


















  • $begingroup$
    Try writing $2-2i$ in the $e^{x}$ form first
    $endgroup$
    – TheMathsGeek
    Jan 5 '17 at 12:47






  • 2




    $begingroup$
    $(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
    $endgroup$
    – ajotatxe
    Jan 5 '17 at 12:47
















$begingroup$
Try writing $2-2i$ in the $e^{x}$ form first
$endgroup$
– TheMathsGeek
Jan 5 '17 at 12:47




$begingroup$
Try writing $2-2i$ in the $e^{x}$ form first
$endgroup$
– TheMathsGeek
Jan 5 '17 at 12:47




2




2




$begingroup$
$(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
$endgroup$
– ajotatxe
Jan 5 '17 at 12:47




$begingroup$
$(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
$endgroup$
– ajotatxe
Jan 5 '17 at 12:47










4 Answers
4






active

oldest

votes


















0












$begingroup$

Hint:



$$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$



Therefore



$$2-2i=2sqrt 2e^{7pi/4}$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Using the Euler's Formula is a good approach but I would use:



    $$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$



    $$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$



    Now compare both:



    $$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$



    Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:



    begin{cases}
    r^5=2sqrt{2}\
    e^{5xi}=e^{(7pi/4+2kpi)i}
    end{cases}



    P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.



    Can you finish?






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
      $endgroup$
      – user6122081
      Jan 5 '17 at 12:54










    • $begingroup$
      I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
      $endgroup$
      – Arnaldo
      Jan 5 '17 at 12:56












    • $begingroup$
      @user6122081: are you ok now?
      $endgroup$
      – Arnaldo
      Jan 5 '17 at 21:11



















    0












    $begingroup$

    We can write $2-2i$ as:



    $z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$



    now we take the root:



    $z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$



    with $kin mathbb Z$, $k=0,1,2,3,4$.



    Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      $arg(2-2i)$ is $displaystyle7frac{pi}{4}$
      $endgroup$
      – Nosrati
      Jan 5 '17 at 14:12



















    0












    $begingroup$

    You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.



    So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).



    Now $z^5=2sqrt2e^{frac{7pi}4i}$.



    So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.



    There are $4$ more.



    Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.



    That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2084648%2ffinding-roots-using-eulers-formula%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      Hint:



      $$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$



      Therefore



      $$2-2i=2sqrt 2e^{7pi/4}$$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        Hint:



        $$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$



        Therefore



        $$2-2i=2sqrt 2e^{7pi/4}$$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          Hint:



          $$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$



          Therefore



          $$2-2i=2sqrt 2e^{7pi/4}$$






          share|cite|improve this answer









          $endgroup$



          Hint:



          $$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$



          Therefore



          $$2-2i=2sqrt 2e^{7pi/4}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 5 '17 at 12:50









          ajotatxeajotatxe

          53.7k23890




          53.7k23890























              0












              $begingroup$

              Using the Euler's Formula is a good approach but I would use:



              $$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$



              $$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$



              Now compare both:



              $$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$



              Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:



              begin{cases}
              r^5=2sqrt{2}\
              e^{5xi}=e^{(7pi/4+2kpi)i}
              end{cases}



              P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.



              Can you finish?






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
                $endgroup$
                – user6122081
                Jan 5 '17 at 12:54










              • $begingroup$
                I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
                $endgroup$
                – Arnaldo
                Jan 5 '17 at 12:56












              • $begingroup$
                @user6122081: are you ok now?
                $endgroup$
                – Arnaldo
                Jan 5 '17 at 21:11
















              0












              $begingroup$

              Using the Euler's Formula is a good approach but I would use:



              $$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$



              $$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$



              Now compare both:



              $$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$



              Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:



              begin{cases}
              r^5=2sqrt{2}\
              e^{5xi}=e^{(7pi/4+2kpi)i}
              end{cases}



              P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.



              Can you finish?






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
                $endgroup$
                – user6122081
                Jan 5 '17 at 12:54










              • $begingroup$
                I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
                $endgroup$
                – Arnaldo
                Jan 5 '17 at 12:56












              • $begingroup$
                @user6122081: are you ok now?
                $endgroup$
                – Arnaldo
                Jan 5 '17 at 21:11














              0












              0








              0





              $begingroup$

              Using the Euler's Formula is a good approach but I would use:



              $$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$



              $$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$



              Now compare both:



              $$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$



              Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:



              begin{cases}
              r^5=2sqrt{2}\
              e^{5xi}=e^{(7pi/4+2kpi)i}
              end{cases}



              P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.



              Can you finish?






              share|cite|improve this answer











              $endgroup$



              Using the Euler's Formula is a good approach but I would use:



              $$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$



              $$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$



              Now compare both:



              $$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$



              Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:



              begin{cases}
              r^5=2sqrt{2}\
              e^{5xi}=e^{(7pi/4+2kpi)i}
              end{cases}



              P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.



              Can you finish?







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jan 5 '17 at 13:07

























              answered Jan 5 '17 at 12:49









              ArnaldoArnaldo

              18.1k42246




              18.1k42246












              • $begingroup$
                just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
                $endgroup$
                – user6122081
                Jan 5 '17 at 12:54










              • $begingroup$
                I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
                $endgroup$
                – Arnaldo
                Jan 5 '17 at 12:56












              • $begingroup$
                @user6122081: are you ok now?
                $endgroup$
                – Arnaldo
                Jan 5 '17 at 21:11


















              • $begingroup$
                just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
                $endgroup$
                – user6122081
                Jan 5 '17 at 12:54










              • $begingroup$
                I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
                $endgroup$
                – Arnaldo
                Jan 5 '17 at 12:56












              • $begingroup$
                @user6122081: are you ok now?
                $endgroup$
                – Arnaldo
                Jan 5 '17 at 21:11
















              $begingroup$
              just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
              $endgroup$
              – user6122081
              Jan 5 '17 at 12:54




              $begingroup$
              just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
              $endgroup$
              – user6122081
              Jan 5 '17 at 12:54












              $begingroup$
              I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
              $endgroup$
              – Arnaldo
              Jan 5 '17 at 12:56






              $begingroup$
              I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
              $endgroup$
              – Arnaldo
              Jan 5 '17 at 12:56














              $begingroup$
              @user6122081: are you ok now?
              $endgroup$
              – Arnaldo
              Jan 5 '17 at 21:11




              $begingroup$
              @user6122081: are you ok now?
              $endgroup$
              – Arnaldo
              Jan 5 '17 at 21:11











              0












              $begingroup$

              We can write $2-2i$ as:



              $z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$



              now we take the root:



              $z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$



              with $kin mathbb Z$, $k=0,1,2,3,4$.



              Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                $arg(2-2i)$ is $displaystyle7frac{pi}{4}$
                $endgroup$
                – Nosrati
                Jan 5 '17 at 14:12
















              0












              $begingroup$

              We can write $2-2i$ as:



              $z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$



              now we take the root:



              $z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$



              with $kin mathbb Z$, $k=0,1,2,3,4$.



              Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                $arg(2-2i)$ is $displaystyle7frac{pi}{4}$
                $endgroup$
                – Nosrati
                Jan 5 '17 at 14:12














              0












              0








              0





              $begingroup$

              We can write $2-2i$ as:



              $z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$



              now we take the root:



              $z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$



              with $kin mathbb Z$, $k=0,1,2,3,4$.



              Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$






              share|cite|improve this answer











              $endgroup$



              We can write $2-2i$ as:



              $z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$



              now we take the root:



              $z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$



              with $kin mathbb Z$, $k=0,1,2,3,4$.



              Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jan 5 '17 at 17:53

























              answered Jan 5 '17 at 12:49









              MattG88MattG88

              2,4682815




              2,4682815












              • $begingroup$
                $arg(2-2i)$ is $displaystyle7frac{pi}{4}$
                $endgroup$
                – Nosrati
                Jan 5 '17 at 14:12


















              • $begingroup$
                $arg(2-2i)$ is $displaystyle7frac{pi}{4}$
                $endgroup$
                – Nosrati
                Jan 5 '17 at 14:12
















              $begingroup$
              $arg(2-2i)$ is $displaystyle7frac{pi}{4}$
              $endgroup$
              – Nosrati
              Jan 5 '17 at 14:12




              $begingroup$
              $arg(2-2i)$ is $displaystyle7frac{pi}{4}$
              $endgroup$
              – Nosrati
              Jan 5 '17 at 14:12











              0












              $begingroup$

              You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.



              So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).



              Now $z^5=2sqrt2e^{frac{7pi}4i}$.



              So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.



              There are $4$ more.



              Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.



              That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.



                So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).



                Now $z^5=2sqrt2e^{frac{7pi}4i}$.



                So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.



                There are $4$ more.



                Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.



                That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.



                  So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).



                  Now $z^5=2sqrt2e^{frac{7pi}4i}$.



                  So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.



                  There are $4$ more.



                  Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.



                  That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.






                  share|cite|improve this answer











                  $endgroup$



                  You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.



                  So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).



                  Now $z^5=2sqrt2e^{frac{7pi}4i}$.



                  So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.



                  There are $4$ more.



                  Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.



                  That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 2 at 17:43

























                  answered Jan 2 at 8:57









                  Chris CusterChris Custer

                  11.3k3824




                  11.3k3824






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2084648%2ffinding-roots-using-eulers-formula%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                      Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                      A Topological Invariant for $pi_3(U(n))$