Finding roots using Euler's formula
$begingroup$
I'm going through past exam papers and have come accross the following question:
find all solutions to $z^5=2-2i $
for this question I was going to use Euler's formula:
$ e^{i(2k+1)pi}=-1 $
$ -2e^{i(2k+1)pi}=2 $
$ -2e^{i(2k+1)pi}-2i=2-2i $
$ z^5 =-2e^{i(2k+1)pi}-2i$
$ z = -2^{frac 1 5}e^{frac {i(2k+1)pi}{5}}-2i^{frac 1 5}$
I'll then sub in k=0,1,2,3,4
am I on the right track here?
thanks!
complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
I'm going through past exam papers and have come accross the following question:
find all solutions to $z^5=2-2i $
for this question I was going to use Euler's formula:
$ e^{i(2k+1)pi}=-1 $
$ -2e^{i(2k+1)pi}=2 $
$ -2e^{i(2k+1)pi}-2i=2-2i $
$ z^5 =-2e^{i(2k+1)pi}-2i$
$ z = -2^{frac 1 5}e^{frac {i(2k+1)pi}{5}}-2i^{frac 1 5}$
I'll then sub in k=0,1,2,3,4
am I on the right track here?
thanks!
complex-analysis complex-numbers
$endgroup$
$begingroup$
Try writing $2-2i$ in the $e^{x}$ form first
$endgroup$
– TheMathsGeek
Jan 5 '17 at 12:47
2
$begingroup$
$(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
$endgroup$
– ajotatxe
Jan 5 '17 at 12:47
add a comment |
$begingroup$
I'm going through past exam papers and have come accross the following question:
find all solutions to $z^5=2-2i $
for this question I was going to use Euler's formula:
$ e^{i(2k+1)pi}=-1 $
$ -2e^{i(2k+1)pi}=2 $
$ -2e^{i(2k+1)pi}-2i=2-2i $
$ z^5 =-2e^{i(2k+1)pi}-2i$
$ z = -2^{frac 1 5}e^{frac {i(2k+1)pi}{5}}-2i^{frac 1 5}$
I'll then sub in k=0,1,2,3,4
am I on the right track here?
thanks!
complex-analysis complex-numbers
$endgroup$
I'm going through past exam papers and have come accross the following question:
find all solutions to $z^5=2-2i $
for this question I was going to use Euler's formula:
$ e^{i(2k+1)pi}=-1 $
$ -2e^{i(2k+1)pi}=2 $
$ -2e^{i(2k+1)pi}-2i=2-2i $
$ z^5 =-2e^{i(2k+1)pi}-2i$
$ z = -2^{frac 1 5}e^{frac {i(2k+1)pi}{5}}-2i^{frac 1 5}$
I'll then sub in k=0,1,2,3,4
am I on the right track here?
thanks!
complex-analysis complex-numbers
complex-analysis complex-numbers
asked Jan 5 '17 at 12:42
user6122081user6122081
758
758
$begingroup$
Try writing $2-2i$ in the $e^{x}$ form first
$endgroup$
– TheMathsGeek
Jan 5 '17 at 12:47
2
$begingroup$
$(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
$endgroup$
– ajotatxe
Jan 5 '17 at 12:47
add a comment |
$begingroup$
Try writing $2-2i$ in the $e^{x}$ form first
$endgroup$
– TheMathsGeek
Jan 5 '17 at 12:47
2
$begingroup$
$(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
$endgroup$
– ajotatxe
Jan 5 '17 at 12:47
$begingroup$
Try writing $2-2i$ in the $e^{x}$ form first
$endgroup$
– TheMathsGeek
Jan 5 '17 at 12:47
$begingroup$
Try writing $2-2i$ in the $e^{x}$ form first
$endgroup$
– TheMathsGeek
Jan 5 '17 at 12:47
2
2
$begingroup$
$(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
$endgroup$
– ajotatxe
Jan 5 '17 at 12:47
$begingroup$
$(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
$endgroup$
– ajotatxe
Jan 5 '17 at 12:47
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Hint:
$$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$
Therefore
$$2-2i=2sqrt 2e^{7pi/4}$$
$endgroup$
add a comment |
$begingroup$
Using the Euler's Formula is a good approach but I would use:
$$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$
$$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Now compare both:
$$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:
begin{cases}
r^5=2sqrt{2}\
e^{5xi}=e^{(7pi/4+2kpi)i}
end{cases}
P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.
Can you finish?
$endgroup$
$begingroup$
just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
$endgroup$
– user6122081
Jan 5 '17 at 12:54
$begingroup$
I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
$endgroup$
– Arnaldo
Jan 5 '17 at 12:56
$begingroup$
@user6122081: are you ok now?
$endgroup$
– Arnaldo
Jan 5 '17 at 21:11
add a comment |
$begingroup$
We can write $2-2i$ as:
$z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$
now we take the root:
$z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$
with $kin mathbb Z$, $k=0,1,2,3,4$.
Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$
$endgroup$
$begingroup$
$arg(2-2i)$ is $displaystyle7frac{pi}{4}$
$endgroup$
– Nosrati
Jan 5 '17 at 14:12
add a comment |
$begingroup$
You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.
So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).
Now $z^5=2sqrt2e^{frac{7pi}4i}$.
So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.
There are $4$ more.
Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.
That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2084648%2ffinding-roots-using-eulers-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$
Therefore
$$2-2i=2sqrt 2e^{7pi/4}$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$
Therefore
$$2-2i=2sqrt 2e^{7pi/4}$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$
Therefore
$$2-2i=2sqrt 2e^{7pi/4}$$
$endgroup$
Hint:
$$e^{7pi/4}=frac1{sqrt 2}-ifrac1{sqrt 2}$$
Therefore
$$2-2i=2sqrt 2e^{7pi/4}$$
answered Jan 5 '17 at 12:50
ajotatxeajotatxe
53.7k23890
53.7k23890
add a comment |
add a comment |
$begingroup$
Using the Euler's Formula is a good approach but I would use:
$$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$
$$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Now compare both:
$$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:
begin{cases}
r^5=2sqrt{2}\
e^{5xi}=e^{(7pi/4+2kpi)i}
end{cases}
P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.
Can you finish?
$endgroup$
$begingroup$
just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
$endgroup$
– user6122081
Jan 5 '17 at 12:54
$begingroup$
I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
$endgroup$
– Arnaldo
Jan 5 '17 at 12:56
$begingroup$
@user6122081: are you ok now?
$endgroup$
– Arnaldo
Jan 5 '17 at 21:11
add a comment |
$begingroup$
Using the Euler's Formula is a good approach but I would use:
$$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$
$$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Now compare both:
$$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:
begin{cases}
r^5=2sqrt{2}\
e^{5xi}=e^{(7pi/4+2kpi)i}
end{cases}
P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.
Can you finish?
$endgroup$
$begingroup$
just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
$endgroup$
– user6122081
Jan 5 '17 at 12:54
$begingroup$
I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
$endgroup$
– Arnaldo
Jan 5 '17 at 12:56
$begingroup$
@user6122081: are you ok now?
$endgroup$
– Arnaldo
Jan 5 '17 at 21:11
add a comment |
$begingroup$
Using the Euler's Formula is a good approach but I would use:
$$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$
$$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Now compare both:
$$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:
begin{cases}
r^5=2sqrt{2}\
e^{5xi}=e^{(7pi/4+2kpi)i}
end{cases}
P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.
Can you finish?
$endgroup$
Using the Euler's Formula is a good approach but I would use:
$$z=re^{ix} rightarrow z^5=r^5e^{5xi}$$
$$2-2i=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Now compare both:
$$r^5e^{5xi}=2sqrt{2}e^{(7pi/4+2kpi)i}$$
Once both complex numbers are equal then they must have the same magnitude ($r^5=2sqrt{2}$) and also $e^{5xi}=e^{(7pi/4+2kpi)i}$, so:
begin{cases}
r^5=2sqrt{2}\
e^{5xi}=e^{(7pi/4+2kpi)i}
end{cases}
P.S: Remember that in general if we have $u=r_1e^{ix_1}$ $v=r_2e^{ix_2}$ and if $z=w$ then we must have $r_1=r_2$ and $e^{ix_1}=e^{ix_2}$.
Can you finish?
edited Jan 5 '17 at 13:07
answered Jan 5 '17 at 12:49
ArnaldoArnaldo
18.1k42246
18.1k42246
$begingroup$
just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
$endgroup$
– user6122081
Jan 5 '17 at 12:54
$begingroup$
I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
$endgroup$
– Arnaldo
Jan 5 '17 at 12:56
$begingroup$
@user6122081: are you ok now?
$endgroup$
– Arnaldo
Jan 5 '17 at 21:11
add a comment |
$begingroup$
just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
$endgroup$
– user6122081
Jan 5 '17 at 12:54
$begingroup$
I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
$endgroup$
– Arnaldo
Jan 5 '17 at 12:56
$begingroup$
@user6122081: are you ok now?
$endgroup$
– Arnaldo
Jan 5 '17 at 21:11
$begingroup$
just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
$endgroup$
– user6122081
Jan 5 '17 at 12:54
$begingroup$
just confused at where you got $ e^{5xi}=e^{(7pi/4+2kpi)i} $ Thanks for your reply!
$endgroup$
– user6122081
Jan 5 '17 at 12:54
$begingroup$
I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
$endgroup$
– Arnaldo
Jan 5 '17 at 12:56
$begingroup$
I'm just comparing the Euler formula. If we have $z=r_ze^{xi}$ and $w=r_we^{yi}$ then if $z=w$ that give us both numbers has the same modulus ($r_z=r_w$) and also $e^{xi}=e^{yi}$.
$endgroup$
– Arnaldo
Jan 5 '17 at 12:56
$begingroup$
@user6122081: are you ok now?
$endgroup$
– Arnaldo
Jan 5 '17 at 21:11
$begingroup$
@user6122081: are you ok now?
$endgroup$
– Arnaldo
Jan 5 '17 at 21:11
add a comment |
$begingroup$
We can write $2-2i$ as:
$z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$
now we take the root:
$z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$
with $kin mathbb Z$, $k=0,1,2,3,4$.
Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$
$endgroup$
$begingroup$
$arg(2-2i)$ is $displaystyle7frac{pi}{4}$
$endgroup$
– Nosrati
Jan 5 '17 at 14:12
add a comment |
$begingroup$
We can write $2-2i$ as:
$z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$
now we take the root:
$z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$
with $kin mathbb Z$, $k=0,1,2,3,4$.
Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$
$endgroup$
$begingroup$
$arg(2-2i)$ is $displaystyle7frac{pi}{4}$
$endgroup$
– Nosrati
Jan 5 '17 at 14:12
add a comment |
$begingroup$
We can write $2-2i$ as:
$z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$
now we take the root:
$z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$
with $kin mathbb Z$, $k=0,1,2,3,4$.
Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$
$endgroup$
We can write $2-2i$ as:
$z^5=2-2i=2sqrt2e^{i{-piover4}}=2sqrt2e^{i{-piover4}+2kpi}$
now we take the root:
$z=(2sqrt2)^{1over5}e^{i{-piover20}+{2kpiover5}}$
with $kin mathbb Z$, $k=0,1,2,3,4$.
Your approach fails because $z=(2-2i)^{1over5}ne(2)^{1over5}-(2i)^{1over5}$
edited Jan 5 '17 at 17:53
answered Jan 5 '17 at 12:49
MattG88MattG88
2,4682815
2,4682815
$begingroup$
$arg(2-2i)$ is $displaystyle7frac{pi}{4}$
$endgroup$
– Nosrati
Jan 5 '17 at 14:12
add a comment |
$begingroup$
$arg(2-2i)$ is $displaystyle7frac{pi}{4}$
$endgroup$
– Nosrati
Jan 5 '17 at 14:12
$begingroup$
$arg(2-2i)$ is $displaystyle7frac{pi}{4}$
$endgroup$
– Nosrati
Jan 5 '17 at 14:12
$begingroup$
$arg(2-2i)$ is $displaystyle7frac{pi}{4}$
$endgroup$
– Nosrati
Jan 5 '17 at 14:12
add a comment |
$begingroup$
You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.
So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).
Now $z^5=2sqrt2e^{frac{7pi}4i}$.
So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.
There are $4$ more.
Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.
That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.
$endgroup$
add a comment |
$begingroup$
You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.
So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).
Now $z^5=2sqrt2e^{frac{7pi}4i}$.
So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.
There are $4$ more.
Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.
That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.
$endgroup$
add a comment |
$begingroup$
You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.
So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).
Now $z^5=2sqrt2e^{frac{7pi}4i}$.
So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.
There are $4$ more.
Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.
That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.
$endgroup$
You fell for the freshman's dream: $(a+b)^n=a^n+b^n$.
So, instead, write $2-2i=2sqrt2e^{frac{7pi}4i}$ (using Euler's formula).
Now $z^5=2sqrt2e^{frac{7pi}4i}$.
So $z=sqrt[10]{8}e^{frac{7pi}{20}i}$ is one solution.
There are $4$ more.
Take a primitive $5$th root of unity, $rho=e^{frac{2pi i}5}$. Then the other $4$ are: $rho z,rho^2z,rho^3z$ and $rho^4z$.
That is, $sqrt[10]8e^{(frac{7pi+8pi k}{20})i}$, for $k=0,1,2,3$ and $4$.
edited Jan 2 at 17:43
answered Jan 2 at 8:57
Chris CusterChris Custer
11.3k3824
11.3k3824
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2084648%2ffinding-roots-using-eulers-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Try writing $2-2i$ in the $e^{x}$ form first
$endgroup$
– TheMathsGeek
Jan 5 '17 at 12:47
2
$begingroup$
$(a+b)^{1/5}neq a^{1/5}+b^{1/5}$
$endgroup$
– ajotatxe
Jan 5 '17 at 12:47