Arc length of a point on ellipse from the vertex












0












$begingroup$


How is the arc length of an ellipse (measured from the vertex) defined by $x = a cos (theta)$, $y = b sin(theta)$ given by $s(psi) = a Ellipticleft(psi,sqrt{1-frac{b^2}{a^2}}right) $. Please see my attempt below
begin{align*}
s(psi) &~=~int_{0}^{psi} sqrt{left(frac{dx}{dtheta}right)^2+ left(frac{dy}{dtheta}right)^2} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2 sin^2(theta)+b^2cos^2(theta)} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2 (1-cos^2(theta))+b^2cos^2(theta)} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2+(b^2-a^2)cos^2(theta)} dtheta
\
&~=~ a int_{0}^{psi} sqrt{ 1-left(1-frac{a^2}{b^2}right)cos^2(theta)} dtheta,
end{align*}
which is not equal to
begin{align*}
s(psi) &~=~ a Ellipticleft(psi,sqrt{1-frac{b^2}{a^2}}right)
\
&~=~a int_{0}^{psi} sqrt{ 1-left(1-frac{b^2}{a^2}right)sin^2(theta)}.
end{align*}










share|cite|improve this question











$endgroup$












  • $begingroup$
    You are attempting to do what, exactly? The integral representation for the length is correct, and it is an elliptic integral (of the second kind).
    $endgroup$
    – Jack D'Aurizio
    Sep 18 '18 at 15:10










  • $begingroup$
    @JackD'Aurizio Please see the last three lines added to the question. Thanks.
    $endgroup$
    – Pheobey
    Sep 18 '18 at 15:23
















0












$begingroup$


How is the arc length of an ellipse (measured from the vertex) defined by $x = a cos (theta)$, $y = b sin(theta)$ given by $s(psi) = a Ellipticleft(psi,sqrt{1-frac{b^2}{a^2}}right) $. Please see my attempt below
begin{align*}
s(psi) &~=~int_{0}^{psi} sqrt{left(frac{dx}{dtheta}right)^2+ left(frac{dy}{dtheta}right)^2} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2 sin^2(theta)+b^2cos^2(theta)} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2 (1-cos^2(theta))+b^2cos^2(theta)} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2+(b^2-a^2)cos^2(theta)} dtheta
\
&~=~ a int_{0}^{psi} sqrt{ 1-left(1-frac{a^2}{b^2}right)cos^2(theta)} dtheta,
end{align*}
which is not equal to
begin{align*}
s(psi) &~=~ a Ellipticleft(psi,sqrt{1-frac{b^2}{a^2}}right)
\
&~=~a int_{0}^{psi} sqrt{ 1-left(1-frac{b^2}{a^2}right)sin^2(theta)}.
end{align*}










share|cite|improve this question











$endgroup$












  • $begingroup$
    You are attempting to do what, exactly? The integral representation for the length is correct, and it is an elliptic integral (of the second kind).
    $endgroup$
    – Jack D'Aurizio
    Sep 18 '18 at 15:10










  • $begingroup$
    @JackD'Aurizio Please see the last three lines added to the question. Thanks.
    $endgroup$
    – Pheobey
    Sep 18 '18 at 15:23














0












0








0





$begingroup$


How is the arc length of an ellipse (measured from the vertex) defined by $x = a cos (theta)$, $y = b sin(theta)$ given by $s(psi) = a Ellipticleft(psi,sqrt{1-frac{b^2}{a^2}}right) $. Please see my attempt below
begin{align*}
s(psi) &~=~int_{0}^{psi} sqrt{left(frac{dx}{dtheta}right)^2+ left(frac{dy}{dtheta}right)^2} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2 sin^2(theta)+b^2cos^2(theta)} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2 (1-cos^2(theta))+b^2cos^2(theta)} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2+(b^2-a^2)cos^2(theta)} dtheta
\
&~=~ a int_{0}^{psi} sqrt{ 1-left(1-frac{a^2}{b^2}right)cos^2(theta)} dtheta,
end{align*}
which is not equal to
begin{align*}
s(psi) &~=~ a Ellipticleft(psi,sqrt{1-frac{b^2}{a^2}}right)
\
&~=~a int_{0}^{psi} sqrt{ 1-left(1-frac{b^2}{a^2}right)sin^2(theta)}.
end{align*}










share|cite|improve this question











$endgroup$




How is the arc length of an ellipse (measured from the vertex) defined by $x = a cos (theta)$, $y = b sin(theta)$ given by $s(psi) = a Ellipticleft(psi,sqrt{1-frac{b^2}{a^2}}right) $. Please see my attempt below
begin{align*}
s(psi) &~=~int_{0}^{psi} sqrt{left(frac{dx}{dtheta}right)^2+ left(frac{dy}{dtheta}right)^2} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2 sin^2(theta)+b^2cos^2(theta)} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2 (1-cos^2(theta))+b^2cos^2(theta)} dtheta
\
&~=~ int_{0}^{psi} sqrt{ a^2+(b^2-a^2)cos^2(theta)} dtheta
\
&~=~ a int_{0}^{psi} sqrt{ 1-left(1-frac{a^2}{b^2}right)cos^2(theta)} dtheta,
end{align*}
which is not equal to
begin{align*}
s(psi) &~=~ a Ellipticleft(psi,sqrt{1-frac{b^2}{a^2}}right)
\
&~=~a int_{0}^{psi} sqrt{ 1-left(1-frac{b^2}{a^2}right)sin^2(theta)}.
end{align*}







calculus integration trigonometry conic-sections arc-length






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 18 '18 at 15:21







Pheobey

















asked Sep 18 '18 at 15:07









PheobeyPheobey

32




32












  • $begingroup$
    You are attempting to do what, exactly? The integral representation for the length is correct, and it is an elliptic integral (of the second kind).
    $endgroup$
    – Jack D'Aurizio
    Sep 18 '18 at 15:10










  • $begingroup$
    @JackD'Aurizio Please see the last three lines added to the question. Thanks.
    $endgroup$
    – Pheobey
    Sep 18 '18 at 15:23


















  • $begingroup$
    You are attempting to do what, exactly? The integral representation for the length is correct, and it is an elliptic integral (of the second kind).
    $endgroup$
    – Jack D'Aurizio
    Sep 18 '18 at 15:10










  • $begingroup$
    @JackD'Aurizio Please see the last three lines added to the question. Thanks.
    $endgroup$
    – Pheobey
    Sep 18 '18 at 15:23
















$begingroup$
You are attempting to do what, exactly? The integral representation for the length is correct, and it is an elliptic integral (of the second kind).
$endgroup$
– Jack D'Aurizio
Sep 18 '18 at 15:10




$begingroup$
You are attempting to do what, exactly? The integral representation for the length is correct, and it is an elliptic integral (of the second kind).
$endgroup$
– Jack D'Aurizio
Sep 18 '18 at 15:10












$begingroup$
@JackD'Aurizio Please see the last three lines added to the question. Thanks.
$endgroup$
– Pheobey
Sep 18 '18 at 15:23




$begingroup$
@JackD'Aurizio Please see the last three lines added to the question. Thanks.
$endgroup$
– Pheobey
Sep 18 '18 at 15:23










2 Answers
2






active

oldest

votes


















0












$begingroup$



  • For clockwise sense:



    begin{align}
    (x,y) &= (asin theta,bcos theta) \
    s(theta) &= aE(theta, varepsilon) \
    varepsilon &= sqrt{1-frac{b^2}{a^2}}
    end{align}




  • For anti-clockwise sense:



    begin{align}
    (x,y) &= (acos theta,bsin theta) \
    s(theta) &= bEleft( theta, frac{iavarepsilon}{b} right) \
    &= aEleft( frac{pi}{2}-theta, varepsilon right) \
    frac{iavarepsilon}{b} &= sqrt{1-frac{a^2}{b^2}}
    end{align}




  • Parametrized with Jacobi elliptic functions:



    begin{align}
    (x,y) &= (aoperatorname{sn} (u,varepsilon),
    boperatorname{cn} (u,varepsilon)) \
    s(u) &= aE( operatorname{am} ( u,varepsilon ), varepsilon ) \
    end{align}





See also the arclength formula in polar coordinates here.







share|cite|improve this answer











$endgroup$













  • $begingroup$
    I think for clockwise sense $(x,y)=left(acos(t),-bsin(t)right)$. How do you define the clockwise sense?
    $endgroup$
    – Pheobey
    Sep 19 '18 at 5:52












  • $begingroup$
    The start point for my definition is $(0,b)$ while your start point is $(a,0)$ that is a phase shift of $90^{circ}$.
    $endgroup$
    – Ng Chung Tak
    Sep 19 '18 at 5:58





















0












$begingroup$

You just have to exchange $a$ and $b$, and use $cos^2=1-sin^2$. Then the two expressions agree. So it's just a question of how you define your ellipse.



Alternatively, you can look on the elliptic integral as measuring the arc length anticlockwise from the point $(0,b)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    For my ellipse definition $a =$ semi-major axis, and the arc length is measured anti-clockwise from the point $(a,0)$. I can't see how the two expressions would agree.
    $endgroup$
    – Pheobey
    Sep 18 '18 at 17:29











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2921627%2farc-length-of-a-point-on-ellipse-from-the-vertex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$



  • For clockwise sense:



    begin{align}
    (x,y) &= (asin theta,bcos theta) \
    s(theta) &= aE(theta, varepsilon) \
    varepsilon &= sqrt{1-frac{b^2}{a^2}}
    end{align}




  • For anti-clockwise sense:



    begin{align}
    (x,y) &= (acos theta,bsin theta) \
    s(theta) &= bEleft( theta, frac{iavarepsilon}{b} right) \
    &= aEleft( frac{pi}{2}-theta, varepsilon right) \
    frac{iavarepsilon}{b} &= sqrt{1-frac{a^2}{b^2}}
    end{align}




  • Parametrized with Jacobi elliptic functions:



    begin{align}
    (x,y) &= (aoperatorname{sn} (u,varepsilon),
    boperatorname{cn} (u,varepsilon)) \
    s(u) &= aE( operatorname{am} ( u,varepsilon ), varepsilon ) \
    end{align}





See also the arclength formula in polar coordinates here.







share|cite|improve this answer











$endgroup$













  • $begingroup$
    I think for clockwise sense $(x,y)=left(acos(t),-bsin(t)right)$. How do you define the clockwise sense?
    $endgroup$
    – Pheobey
    Sep 19 '18 at 5:52












  • $begingroup$
    The start point for my definition is $(0,b)$ while your start point is $(a,0)$ that is a phase shift of $90^{circ}$.
    $endgroup$
    – Ng Chung Tak
    Sep 19 '18 at 5:58


















0












$begingroup$



  • For clockwise sense:



    begin{align}
    (x,y) &= (asin theta,bcos theta) \
    s(theta) &= aE(theta, varepsilon) \
    varepsilon &= sqrt{1-frac{b^2}{a^2}}
    end{align}




  • For anti-clockwise sense:



    begin{align}
    (x,y) &= (acos theta,bsin theta) \
    s(theta) &= bEleft( theta, frac{iavarepsilon}{b} right) \
    &= aEleft( frac{pi}{2}-theta, varepsilon right) \
    frac{iavarepsilon}{b} &= sqrt{1-frac{a^2}{b^2}}
    end{align}




  • Parametrized with Jacobi elliptic functions:



    begin{align}
    (x,y) &= (aoperatorname{sn} (u,varepsilon),
    boperatorname{cn} (u,varepsilon)) \
    s(u) &= aE( operatorname{am} ( u,varepsilon ), varepsilon ) \
    end{align}





See also the arclength formula in polar coordinates here.







share|cite|improve this answer











$endgroup$













  • $begingroup$
    I think for clockwise sense $(x,y)=left(acos(t),-bsin(t)right)$. How do you define the clockwise sense?
    $endgroup$
    – Pheobey
    Sep 19 '18 at 5:52












  • $begingroup$
    The start point for my definition is $(0,b)$ while your start point is $(a,0)$ that is a phase shift of $90^{circ}$.
    $endgroup$
    – Ng Chung Tak
    Sep 19 '18 at 5:58
















0












0








0





$begingroup$



  • For clockwise sense:



    begin{align}
    (x,y) &= (asin theta,bcos theta) \
    s(theta) &= aE(theta, varepsilon) \
    varepsilon &= sqrt{1-frac{b^2}{a^2}}
    end{align}




  • For anti-clockwise sense:



    begin{align}
    (x,y) &= (acos theta,bsin theta) \
    s(theta) &= bEleft( theta, frac{iavarepsilon}{b} right) \
    &= aEleft( frac{pi}{2}-theta, varepsilon right) \
    frac{iavarepsilon}{b} &= sqrt{1-frac{a^2}{b^2}}
    end{align}




  • Parametrized with Jacobi elliptic functions:



    begin{align}
    (x,y) &= (aoperatorname{sn} (u,varepsilon),
    boperatorname{cn} (u,varepsilon)) \
    s(u) &= aE( operatorname{am} ( u,varepsilon ), varepsilon ) \
    end{align}





See also the arclength formula in polar coordinates here.







share|cite|improve this answer











$endgroup$





  • For clockwise sense:



    begin{align}
    (x,y) &= (asin theta,bcos theta) \
    s(theta) &= aE(theta, varepsilon) \
    varepsilon &= sqrt{1-frac{b^2}{a^2}}
    end{align}




  • For anti-clockwise sense:



    begin{align}
    (x,y) &= (acos theta,bsin theta) \
    s(theta) &= bEleft( theta, frac{iavarepsilon}{b} right) \
    &= aEleft( frac{pi}{2}-theta, varepsilon right) \
    frac{iavarepsilon}{b} &= sqrt{1-frac{a^2}{b^2}}
    end{align}




  • Parametrized with Jacobi elliptic functions:



    begin{align}
    (x,y) &= (aoperatorname{sn} (u,varepsilon),
    boperatorname{cn} (u,varepsilon)) \
    s(u) &= aE( operatorname{am} ( u,varepsilon ), varepsilon ) \
    end{align}





See also the arclength formula in polar coordinates here.








share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 2 at 10:00

























answered Sep 19 '18 at 2:45









Ng Chung TakNg Chung Tak

14.3k31334




14.3k31334












  • $begingroup$
    I think for clockwise sense $(x,y)=left(acos(t),-bsin(t)right)$. How do you define the clockwise sense?
    $endgroup$
    – Pheobey
    Sep 19 '18 at 5:52












  • $begingroup$
    The start point for my definition is $(0,b)$ while your start point is $(a,0)$ that is a phase shift of $90^{circ}$.
    $endgroup$
    – Ng Chung Tak
    Sep 19 '18 at 5:58




















  • $begingroup$
    I think for clockwise sense $(x,y)=left(acos(t),-bsin(t)right)$. How do you define the clockwise sense?
    $endgroup$
    – Pheobey
    Sep 19 '18 at 5:52












  • $begingroup$
    The start point for my definition is $(0,b)$ while your start point is $(a,0)$ that is a phase shift of $90^{circ}$.
    $endgroup$
    – Ng Chung Tak
    Sep 19 '18 at 5:58


















$begingroup$
I think for clockwise sense $(x,y)=left(acos(t),-bsin(t)right)$. How do you define the clockwise sense?
$endgroup$
– Pheobey
Sep 19 '18 at 5:52






$begingroup$
I think for clockwise sense $(x,y)=left(acos(t),-bsin(t)right)$. How do you define the clockwise sense?
$endgroup$
– Pheobey
Sep 19 '18 at 5:52














$begingroup$
The start point for my definition is $(0,b)$ while your start point is $(a,0)$ that is a phase shift of $90^{circ}$.
$endgroup$
– Ng Chung Tak
Sep 19 '18 at 5:58






$begingroup$
The start point for my definition is $(0,b)$ while your start point is $(a,0)$ that is a phase shift of $90^{circ}$.
$endgroup$
– Ng Chung Tak
Sep 19 '18 at 5:58













0












$begingroup$

You just have to exchange $a$ and $b$, and use $cos^2=1-sin^2$. Then the two expressions agree. So it's just a question of how you define your ellipse.



Alternatively, you can look on the elliptic integral as measuring the arc length anticlockwise from the point $(0,b)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    For my ellipse definition $a =$ semi-major axis, and the arc length is measured anti-clockwise from the point $(a,0)$. I can't see how the two expressions would agree.
    $endgroup$
    – Pheobey
    Sep 18 '18 at 17:29
















0












$begingroup$

You just have to exchange $a$ and $b$, and use $cos^2=1-sin^2$. Then the two expressions agree. So it's just a question of how you define your ellipse.



Alternatively, you can look on the elliptic integral as measuring the arc length anticlockwise from the point $(0,b)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    For my ellipse definition $a =$ semi-major axis, and the arc length is measured anti-clockwise from the point $(a,0)$. I can't see how the two expressions would agree.
    $endgroup$
    – Pheobey
    Sep 18 '18 at 17:29














0












0








0





$begingroup$

You just have to exchange $a$ and $b$, and use $cos^2=1-sin^2$. Then the two expressions agree. So it's just a question of how you define your ellipse.



Alternatively, you can look on the elliptic integral as measuring the arc length anticlockwise from the point $(0,b)$.






share|cite|improve this answer









$endgroup$



You just have to exchange $a$ and $b$, and use $cos^2=1-sin^2$. Then the two expressions agree. So it's just a question of how you define your ellipse.



Alternatively, you can look on the elliptic integral as measuring the arc length anticlockwise from the point $(0,b)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Sep 18 '18 at 16:10









TonyKTonyK

42.1k355134




42.1k355134












  • $begingroup$
    For my ellipse definition $a =$ semi-major axis, and the arc length is measured anti-clockwise from the point $(a,0)$. I can't see how the two expressions would agree.
    $endgroup$
    – Pheobey
    Sep 18 '18 at 17:29


















  • $begingroup$
    For my ellipse definition $a =$ semi-major axis, and the arc length is measured anti-clockwise from the point $(a,0)$. I can't see how the two expressions would agree.
    $endgroup$
    – Pheobey
    Sep 18 '18 at 17:29
















$begingroup$
For my ellipse definition $a =$ semi-major axis, and the arc length is measured anti-clockwise from the point $(a,0)$. I can't see how the two expressions would agree.
$endgroup$
– Pheobey
Sep 18 '18 at 17:29




$begingroup$
For my ellipse definition $a =$ semi-major axis, and the arc length is measured anti-clockwise from the point $(a,0)$. I can't see how the two expressions would agree.
$endgroup$
– Pheobey
Sep 18 '18 at 17:29


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2921627%2farc-length-of-a-point-on-ellipse-from-the-vertex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$