Sum of absolutely continuous independent random variables
$begingroup$
I'm facing the proof of a theorem stating that the sum of two absolutely continuous independent random variables is a new absolutely continuous random variable whose density is given by the convolution of the density functions of the variables. At the beginning I find this statement that I'm struggling to understand (consider that before this theorem we onlybhad the definition of A.C. random variable and independence of random variables).
Let $X_1, X_2$ be two absolutely continuous random variables, and $rho_1(t), rho_2(t)$ be their density. Let $Y=X_1+X_2$. Then
$mathbb{P}( Y leq t )= mathbb{P}( X_1+ X_2 leq t ) = intlimits_{-infty}^{+infty} rho_1(t_1) cdot intlimits_{-infty}^{t-t_1} rho_2(t_2) dt_2 dt_1$
How did we get this last step?
random-variables
$endgroup$
add a comment |
$begingroup$
I'm facing the proof of a theorem stating that the sum of two absolutely continuous independent random variables is a new absolutely continuous random variable whose density is given by the convolution of the density functions of the variables. At the beginning I find this statement that I'm struggling to understand (consider that before this theorem we onlybhad the definition of A.C. random variable and independence of random variables).
Let $X_1, X_2$ be two absolutely continuous random variables, and $rho_1(t), rho_2(t)$ be their density. Let $Y=X_1+X_2$. Then
$mathbb{P}( Y leq t )= mathbb{P}( X_1+ X_2 leq t ) = intlimits_{-infty}^{+infty} rho_1(t_1) cdot intlimits_{-infty}^{t-t_1} rho_2(t_2) dt_2 dt_1$
How did we get this last step?
random-variables
$endgroup$
add a comment |
$begingroup$
I'm facing the proof of a theorem stating that the sum of two absolutely continuous independent random variables is a new absolutely continuous random variable whose density is given by the convolution of the density functions of the variables. At the beginning I find this statement that I'm struggling to understand (consider that before this theorem we onlybhad the definition of A.C. random variable and independence of random variables).
Let $X_1, X_2$ be two absolutely continuous random variables, and $rho_1(t), rho_2(t)$ be their density. Let $Y=X_1+X_2$. Then
$mathbb{P}( Y leq t )= mathbb{P}( X_1+ X_2 leq t ) = intlimits_{-infty}^{+infty} rho_1(t_1) cdot intlimits_{-infty}^{t-t_1} rho_2(t_2) dt_2 dt_1$
How did we get this last step?
random-variables
$endgroup$
I'm facing the proof of a theorem stating that the sum of two absolutely continuous independent random variables is a new absolutely continuous random variable whose density is given by the convolution of the density functions of the variables. At the beginning I find this statement that I'm struggling to understand (consider that before this theorem we onlybhad the definition of A.C. random variable and independence of random variables).
Let $X_1, X_2$ be two absolutely continuous random variables, and $rho_1(t), rho_2(t)$ be their density. Let $Y=X_1+X_2$. Then
$mathbb{P}( Y leq t )= mathbb{P}( X_1+ X_2 leq t ) = intlimits_{-infty}^{+infty} rho_1(t_1) cdot intlimits_{-infty}^{t-t_1} rho_2(t_2) dt_2 dt_1$
How did we get this last step?
random-variables
random-variables
asked Jan 2 at 9:47
Baffo rastaBaffo rasta
10511
10511
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$P{X_1+X_2 leq t|X_1=t_1)=P{X_2 leq t -X_1|X_1=t_1)$$ $=int_{-infty} ^{t-t_1} rho_2(t_2)dt_2.$ Now integrate w.r.t the distribution of $X_1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059289%2fsum-of-absolutely-continuous-independent-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$P{X_1+X_2 leq t|X_1=t_1)=P{X_2 leq t -X_1|X_1=t_1)$$ $=int_{-infty} ^{t-t_1} rho_2(t_2)dt_2.$ Now integrate w.r.t the distribution of $X_1$.
$endgroup$
add a comment |
$begingroup$
$$P{X_1+X_2 leq t|X_1=t_1)=P{X_2 leq t -X_1|X_1=t_1)$$ $=int_{-infty} ^{t-t_1} rho_2(t_2)dt_2.$ Now integrate w.r.t the distribution of $X_1$.
$endgroup$
add a comment |
$begingroup$
$$P{X_1+X_2 leq t|X_1=t_1)=P{X_2 leq t -X_1|X_1=t_1)$$ $=int_{-infty} ^{t-t_1} rho_2(t_2)dt_2.$ Now integrate w.r.t the distribution of $X_1$.
$endgroup$
$$P{X_1+X_2 leq t|X_1=t_1)=P{X_2 leq t -X_1|X_1=t_1)$$ $=int_{-infty} ^{t-t_1} rho_2(t_2)dt_2.$ Now integrate w.r.t the distribution of $X_1$.
answered Jan 2 at 12:14
Kavi Rama MurthyKavi Rama Murthy
53k32055
53k32055
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059289%2fsum-of-absolutely-continuous-independent-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown