How to integrate Simpsons rule using Scipy to plot a 1D graph
i need some help, i have an assignment to code an integration of a function using simpsons rule. I need to use the inbuilt scipy integratesimps function to plot a 1D graph. I just don't know where to start. I think i have to get a list/array of each value of y for the function that corresponds to each values of x: e.g
if my function is x^2
then when
x is 0 y is 0,
x is 1 y is 1,
x is 2 y is 4,
and so on up to a huge limit...
and then use integrate.simps(y,x) where y are all the y values as shown above and x are all the corresponding x values.
However, i can't get it to work at all...has anyone got any examples of a graph plot for a function of x^2 using integrate.simps(y,x)?
here is what i've got so far:
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
x = np.linspace(-10,10,N)
N = 100
yarray =
def f(x):
return x**2
for i in x :
y = f(i)
yarray.append(y)
print(yarray)
E = integrate.simps(yarray,x)
print(E)
plt.plot(x,E)
python scipy numerical-methods integral simpsons-rule
add a comment |
i need some help, i have an assignment to code an integration of a function using simpsons rule. I need to use the inbuilt scipy integratesimps function to plot a 1D graph. I just don't know where to start. I think i have to get a list/array of each value of y for the function that corresponds to each values of x: e.g
if my function is x^2
then when
x is 0 y is 0,
x is 1 y is 1,
x is 2 y is 4,
and so on up to a huge limit...
and then use integrate.simps(y,x) where y are all the y values as shown above and x are all the corresponding x values.
However, i can't get it to work at all...has anyone got any examples of a graph plot for a function of x^2 using integrate.simps(y,x)?
here is what i've got so far:
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
x = np.linspace(-10,10,N)
N = 100
yarray =
def f(x):
return x**2
for i in x :
y = f(i)
yarray.append(y)
print(yarray)
E = integrate.simps(yarray,x)
print(E)
plt.plot(x,E)
python scipy numerical-methods integral simpsons-rule
What do you mean by plotting a 1D graph, are you trying to plot x^2, the integration of x^2, or something else?
– William Lee
Nov 20 '18 at 1:22
i'm trying to plot the integration of x^2, using the integrate.simps()
– M.B
Nov 20 '18 at 1:49
add a comment |
i need some help, i have an assignment to code an integration of a function using simpsons rule. I need to use the inbuilt scipy integratesimps function to plot a 1D graph. I just don't know where to start. I think i have to get a list/array of each value of y for the function that corresponds to each values of x: e.g
if my function is x^2
then when
x is 0 y is 0,
x is 1 y is 1,
x is 2 y is 4,
and so on up to a huge limit...
and then use integrate.simps(y,x) where y are all the y values as shown above and x are all the corresponding x values.
However, i can't get it to work at all...has anyone got any examples of a graph plot for a function of x^2 using integrate.simps(y,x)?
here is what i've got so far:
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
x = np.linspace(-10,10,N)
N = 100
yarray =
def f(x):
return x**2
for i in x :
y = f(i)
yarray.append(y)
print(yarray)
E = integrate.simps(yarray,x)
print(E)
plt.plot(x,E)
python scipy numerical-methods integral simpsons-rule
i need some help, i have an assignment to code an integration of a function using simpsons rule. I need to use the inbuilt scipy integratesimps function to plot a 1D graph. I just don't know where to start. I think i have to get a list/array of each value of y for the function that corresponds to each values of x: e.g
if my function is x^2
then when
x is 0 y is 0,
x is 1 y is 1,
x is 2 y is 4,
and so on up to a huge limit...
and then use integrate.simps(y,x) where y are all the y values as shown above and x are all the corresponding x values.
However, i can't get it to work at all...has anyone got any examples of a graph plot for a function of x^2 using integrate.simps(y,x)?
here is what i've got so far:
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
x = np.linspace(-10,10,N)
N = 100
yarray =
def f(x):
return x**2
for i in x :
y = f(i)
yarray.append(y)
print(yarray)
E = integrate.simps(yarray,x)
print(E)
plt.plot(x,E)
python scipy numerical-methods integral simpsons-rule
python scipy numerical-methods integral simpsons-rule
asked Nov 20 '18 at 0:55
M.BM.B
82
82
What do you mean by plotting a 1D graph, are you trying to plot x^2, the integration of x^2, or something else?
– William Lee
Nov 20 '18 at 1:22
i'm trying to plot the integration of x^2, using the integrate.simps()
– M.B
Nov 20 '18 at 1:49
add a comment |
What do you mean by plotting a 1D graph, are you trying to plot x^2, the integration of x^2, or something else?
– William Lee
Nov 20 '18 at 1:22
i'm trying to plot the integration of x^2, using the integrate.simps()
– M.B
Nov 20 '18 at 1:49
What do you mean by plotting a 1D graph, are you trying to plot x^2, the integration of x^2, or something else?
– William Lee
Nov 20 '18 at 1:22
What do you mean by plotting a 1D graph, are you trying to plot x^2, the integration of x^2, or something else?
– William Lee
Nov 20 '18 at 1:22
i'm trying to plot the integration of x^2, using the integrate.simps()
– M.B
Nov 20 '18 at 1:49
i'm trying to plot the integration of x^2, using the integrate.simps()
– M.B
Nov 20 '18 at 1:49
add a comment |
1 Answer
1
active
oldest
votes
Basically, you need to calculate the integral value for every range of x, from [-10,-10] to [-10,10]
This example code plots
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def f(x):
return x**2
N = 100
x = np.linspace(-10,10,N)
integrals =
x_range =
y_range =
for i in x:
x_range.append(i)
y_range.append(f(i))
integral = integrate.simps(y_range, x_range)
integrals.append(integral)
plt.plot(x, integrals)
plt.show()
To wrap it up
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def integrals(f, xs):
x_range =
y_range =
results =
for x in xs:
x_range.append(x)
y_range.append(f(x))
integral = integrate.simps(y_range, x_range)
results.append(integral)
return results
def f(x, b):
return (x-b)**2
xs = np.linspace(-10, 10, 100)
plt.plot(xs, integrals(lambda x: f(x, 0), xs), label='b=0')
plt.plot(xs, integrals(lambda x: f(x, 2), xs), label='b=2')
plt.plot(xs, integrals(lambda x: f(x, 4), xs), label='b=4')
plt.title('$y(x) = int_{-10}^{x}(t-b)^2dt$')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
and you get
Thanks! that works really well, what happens if i have a variable in my function? e.g (x-b)^2 where b is changing
– M.B
Nov 20 '18 at 11:50
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53384732%2fhow-to-integrate-simpsons-rule-using-scipy-to-plot-a-1d-graph%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Basically, you need to calculate the integral value for every range of x, from [-10,-10] to [-10,10]
This example code plots
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def f(x):
return x**2
N = 100
x = np.linspace(-10,10,N)
integrals =
x_range =
y_range =
for i in x:
x_range.append(i)
y_range.append(f(i))
integral = integrate.simps(y_range, x_range)
integrals.append(integral)
plt.plot(x, integrals)
plt.show()
To wrap it up
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def integrals(f, xs):
x_range =
y_range =
results =
for x in xs:
x_range.append(x)
y_range.append(f(x))
integral = integrate.simps(y_range, x_range)
results.append(integral)
return results
def f(x, b):
return (x-b)**2
xs = np.linspace(-10, 10, 100)
plt.plot(xs, integrals(lambda x: f(x, 0), xs), label='b=0')
plt.plot(xs, integrals(lambda x: f(x, 2), xs), label='b=2')
plt.plot(xs, integrals(lambda x: f(x, 4), xs), label='b=4')
plt.title('$y(x) = int_{-10}^{x}(t-b)^2dt$')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
and you get
Thanks! that works really well, what happens if i have a variable in my function? e.g (x-b)^2 where b is changing
– M.B
Nov 20 '18 at 11:50
add a comment |
Basically, you need to calculate the integral value for every range of x, from [-10,-10] to [-10,10]
This example code plots
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def f(x):
return x**2
N = 100
x = np.linspace(-10,10,N)
integrals =
x_range =
y_range =
for i in x:
x_range.append(i)
y_range.append(f(i))
integral = integrate.simps(y_range, x_range)
integrals.append(integral)
plt.plot(x, integrals)
plt.show()
To wrap it up
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def integrals(f, xs):
x_range =
y_range =
results =
for x in xs:
x_range.append(x)
y_range.append(f(x))
integral = integrate.simps(y_range, x_range)
results.append(integral)
return results
def f(x, b):
return (x-b)**2
xs = np.linspace(-10, 10, 100)
plt.plot(xs, integrals(lambda x: f(x, 0), xs), label='b=0')
plt.plot(xs, integrals(lambda x: f(x, 2), xs), label='b=2')
plt.plot(xs, integrals(lambda x: f(x, 4), xs), label='b=4')
plt.title('$y(x) = int_{-10}^{x}(t-b)^2dt$')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
and you get
Thanks! that works really well, what happens if i have a variable in my function? e.g (x-b)^2 where b is changing
– M.B
Nov 20 '18 at 11:50
add a comment |
Basically, you need to calculate the integral value for every range of x, from [-10,-10] to [-10,10]
This example code plots
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def f(x):
return x**2
N = 100
x = np.linspace(-10,10,N)
integrals =
x_range =
y_range =
for i in x:
x_range.append(i)
y_range.append(f(i))
integral = integrate.simps(y_range, x_range)
integrals.append(integral)
plt.plot(x, integrals)
plt.show()
To wrap it up
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def integrals(f, xs):
x_range =
y_range =
results =
for x in xs:
x_range.append(x)
y_range.append(f(x))
integral = integrate.simps(y_range, x_range)
results.append(integral)
return results
def f(x, b):
return (x-b)**2
xs = np.linspace(-10, 10, 100)
plt.plot(xs, integrals(lambda x: f(x, 0), xs), label='b=0')
plt.plot(xs, integrals(lambda x: f(x, 2), xs), label='b=2')
plt.plot(xs, integrals(lambda x: f(x, 4), xs), label='b=4')
plt.title('$y(x) = int_{-10}^{x}(t-b)^2dt$')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
and you get
Basically, you need to calculate the integral value for every range of x, from [-10,-10] to [-10,10]
This example code plots
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def f(x):
return x**2
N = 100
x = np.linspace(-10,10,N)
integrals =
x_range =
y_range =
for i in x:
x_range.append(i)
y_range.append(f(i))
integral = integrate.simps(y_range, x_range)
integrals.append(integral)
plt.plot(x, integrals)
plt.show()
To wrap it up
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
def integrals(f, xs):
x_range =
y_range =
results =
for x in xs:
x_range.append(x)
y_range.append(f(x))
integral = integrate.simps(y_range, x_range)
results.append(integral)
return results
def f(x, b):
return (x-b)**2
xs = np.linspace(-10, 10, 100)
plt.plot(xs, integrals(lambda x: f(x, 0), xs), label='b=0')
plt.plot(xs, integrals(lambda x: f(x, 2), xs), label='b=2')
plt.plot(xs, integrals(lambda x: f(x, 4), xs), label='b=4')
plt.title('$y(x) = int_{-10}^{x}(t-b)^2dt$')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
and you get
edited Nov 20 '18 at 12:15
answered Nov 20 '18 at 4:01
William LeeWilliam Lee
187110
187110
Thanks! that works really well, what happens if i have a variable in my function? e.g (x-b)^2 where b is changing
– M.B
Nov 20 '18 at 11:50
add a comment |
Thanks! that works really well, what happens if i have a variable in my function? e.g (x-b)^2 where b is changing
– M.B
Nov 20 '18 at 11:50
Thanks! that works really well, what happens if i have a variable in my function? e.g (x-b)^2 where b is changing
– M.B
Nov 20 '18 at 11:50
Thanks! that works really well, what happens if i have a variable in my function? e.g (x-b)^2 where b is changing
– M.B
Nov 20 '18 at 11:50
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53384732%2fhow-to-integrate-simpsons-rule-using-scipy-to-plot-a-1d-graph%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What do you mean by plotting a 1D graph, are you trying to plot x^2, the integration of x^2, or something else?
– William Lee
Nov 20 '18 at 1:22
i'm trying to plot the integration of x^2, using the integrate.simps()
– M.B
Nov 20 '18 at 1:49