Show that any affine connection $nabla$ on $mathbb{R}^n$ is of the form $nabla=D+Gamma$.
Show that any affine connection $nabla$ on $mathbb{R}^n$ is of the form $nabla=D+Gamma$, where $D$ is the Euclidean connection and $Gamma:mathcal{X}(mathbb{R}^n) times mathcal{X}(mathbb{R}^n) rightarrow mathcal{X}(mathbb{R}^n)$ is any $C^{infty}(mathbb{R}^n)$-bilinear map.
Showing that $D+Gamma$ is an affine connection is easy, but I don't know how to show the converse. I mean, what's special about $mathbb{R}^n$?
manifolds riemannian-geometry vector-fields connections
add a comment |
Show that any affine connection $nabla$ on $mathbb{R}^n$ is of the form $nabla=D+Gamma$, where $D$ is the Euclidean connection and $Gamma:mathcal{X}(mathbb{R}^n) times mathcal{X}(mathbb{R}^n) rightarrow mathcal{X}(mathbb{R}^n)$ is any $C^{infty}(mathbb{R}^n)$-bilinear map.
Showing that $D+Gamma$ is an affine connection is easy, but I don't know how to show the converse. I mean, what's special about $mathbb{R}^n$?
manifolds riemannian-geometry vector-fields connections
add a comment |
Show that any affine connection $nabla$ on $mathbb{R}^n$ is of the form $nabla=D+Gamma$, where $D$ is the Euclidean connection and $Gamma:mathcal{X}(mathbb{R}^n) times mathcal{X}(mathbb{R}^n) rightarrow mathcal{X}(mathbb{R}^n)$ is any $C^{infty}(mathbb{R}^n)$-bilinear map.
Showing that $D+Gamma$ is an affine connection is easy, but I don't know how to show the converse. I mean, what's special about $mathbb{R}^n$?
manifolds riemannian-geometry vector-fields connections
Show that any affine connection $nabla$ on $mathbb{R}^n$ is of the form $nabla=D+Gamma$, where $D$ is the Euclidean connection and $Gamma:mathcal{X}(mathbb{R}^n) times mathcal{X}(mathbb{R}^n) rightarrow mathcal{X}(mathbb{R}^n)$ is any $C^{infty}(mathbb{R}^n)$-bilinear map.
Showing that $D+Gamma$ is an affine connection is easy, but I don't know how to show the converse. I mean, what's special about $mathbb{R}^n$?
manifolds riemannian-geometry vector-fields connections
manifolds riemannian-geometry vector-fields connections
asked Nov 21 '18 at 21:49
bbwbbw
47038
47038
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
This follows from the general result that the difference of two affine connections provide such a bilinear map (tensor) $Gamma$. The nontrivial part is to explain why it is $C^infty$-linear in the second argument (which is not the case for the connections themselves). But by the Leibniz rule, for any $C^infty$ function $f$ and vector fields $X,Y$ we have
$$begin{align}(nabla - D)(X,fY) &= nabla(X,fY) - D(X,fY) \&= (Xf)Y + fnabla(X,Y) - (Xf)Y - fD(X,Y) \ &= f(nabla - D)(X,Y),end{align}$$
so the $C^infty$-bilinearity is a consequence of the fact that the "constant terms" (those independent of the connection) cancel each other out in the difference.
Oh how could I forgot the equivalence $nabla=D+Gamma Leftrightarrow nabla - D=Gamma$. Thank you for you answer.
– bbw
Nov 21 '18 at 23:19
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008422%2fshow-that-any-affine-connection-nabla-on-mathbbrn-is-of-the-form-nabl%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
This follows from the general result that the difference of two affine connections provide such a bilinear map (tensor) $Gamma$. The nontrivial part is to explain why it is $C^infty$-linear in the second argument (which is not the case for the connections themselves). But by the Leibniz rule, for any $C^infty$ function $f$ and vector fields $X,Y$ we have
$$begin{align}(nabla - D)(X,fY) &= nabla(X,fY) - D(X,fY) \&= (Xf)Y + fnabla(X,Y) - (Xf)Y - fD(X,Y) \ &= f(nabla - D)(X,Y),end{align}$$
so the $C^infty$-bilinearity is a consequence of the fact that the "constant terms" (those independent of the connection) cancel each other out in the difference.
Oh how could I forgot the equivalence $nabla=D+Gamma Leftrightarrow nabla - D=Gamma$. Thank you for you answer.
– bbw
Nov 21 '18 at 23:19
add a comment |
This follows from the general result that the difference of two affine connections provide such a bilinear map (tensor) $Gamma$. The nontrivial part is to explain why it is $C^infty$-linear in the second argument (which is not the case for the connections themselves). But by the Leibniz rule, for any $C^infty$ function $f$ and vector fields $X,Y$ we have
$$begin{align}(nabla - D)(X,fY) &= nabla(X,fY) - D(X,fY) \&= (Xf)Y + fnabla(X,Y) - (Xf)Y - fD(X,Y) \ &= f(nabla - D)(X,Y),end{align}$$
so the $C^infty$-bilinearity is a consequence of the fact that the "constant terms" (those independent of the connection) cancel each other out in the difference.
Oh how could I forgot the equivalence $nabla=D+Gamma Leftrightarrow nabla - D=Gamma$. Thank you for you answer.
– bbw
Nov 21 '18 at 23:19
add a comment |
This follows from the general result that the difference of two affine connections provide such a bilinear map (tensor) $Gamma$. The nontrivial part is to explain why it is $C^infty$-linear in the second argument (which is not the case for the connections themselves). But by the Leibniz rule, for any $C^infty$ function $f$ and vector fields $X,Y$ we have
$$begin{align}(nabla - D)(X,fY) &= nabla(X,fY) - D(X,fY) \&= (Xf)Y + fnabla(X,Y) - (Xf)Y - fD(X,Y) \ &= f(nabla - D)(X,Y),end{align}$$
so the $C^infty$-bilinearity is a consequence of the fact that the "constant terms" (those independent of the connection) cancel each other out in the difference.
This follows from the general result that the difference of two affine connections provide such a bilinear map (tensor) $Gamma$. The nontrivial part is to explain why it is $C^infty$-linear in the second argument (which is not the case for the connections themselves). But by the Leibniz rule, for any $C^infty$ function $f$ and vector fields $X,Y$ we have
$$begin{align}(nabla - D)(X,fY) &= nabla(X,fY) - D(X,fY) \&= (Xf)Y + fnabla(X,Y) - (Xf)Y - fD(X,Y) \ &= f(nabla - D)(X,Y),end{align}$$
so the $C^infty$-bilinearity is a consequence of the fact that the "constant terms" (those independent of the connection) cancel each other out in the difference.
edited Nov 22 '18 at 12:32
answered Nov 21 '18 at 22:49


Alex ProvostAlex Provost
15.2k22250
15.2k22250
Oh how could I forgot the equivalence $nabla=D+Gamma Leftrightarrow nabla - D=Gamma$. Thank you for you answer.
– bbw
Nov 21 '18 at 23:19
add a comment |
Oh how could I forgot the equivalence $nabla=D+Gamma Leftrightarrow nabla - D=Gamma$. Thank you for you answer.
– bbw
Nov 21 '18 at 23:19
Oh how could I forgot the equivalence $nabla=D+Gamma Leftrightarrow nabla - D=Gamma$. Thank you for you answer.
– bbw
Nov 21 '18 at 23:19
Oh how could I forgot the equivalence $nabla=D+Gamma Leftrightarrow nabla - D=Gamma$. Thank you for you answer.
– bbw
Nov 21 '18 at 23:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008422%2fshow-that-any-affine-connection-nabla-on-mathbbrn-is-of-the-form-nabl%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown