When does $int frac{1}{(1+x^2+xy+y^2)^alpha}$ converge?
$begingroup$
I wish to find for which $alpha in mathbb R$ the integral $int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy$ converges.
What I tried:
Firstly notice that the integrand is always positive since $xy leq x^2+y^2$.
If $alpha leq 0$ the integral trivially diverges. Assume $alpha >0$. Then:
$int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy geq int_{mathbb R^2}frac{1}{(1+2x^2+2y^2)^alpha}dxdy= 2piint_{0}^{infty}frac{r}{(1+2r^2)^alpha}dr = piint_{0}^{infty}frac{1}{(1+2t)^alpha}dt = frac{pi}{2}int_{1}^{infty}frac{1}{s^alpha}ds$
This integral diverges when $alpha leq 1$ so it follows that our original integral diverges when $alpha leq 1$.
Now what? I'm stuck.
integration improper-integrals
$endgroup$
|
show 1 more comment
$begingroup$
I wish to find for which $alpha in mathbb R$ the integral $int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy$ converges.
What I tried:
Firstly notice that the integrand is always positive since $xy leq x^2+y^2$.
If $alpha leq 0$ the integral trivially diverges. Assume $alpha >0$. Then:
$int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy geq int_{mathbb R^2}frac{1}{(1+2x^2+2y^2)^alpha}dxdy= 2piint_{0}^{infty}frac{r}{(1+2r^2)^alpha}dr = piint_{0}^{infty}frac{1}{(1+2t)^alpha}dt = frac{pi}{2}int_{1}^{infty}frac{1}{s^alpha}ds$
This integral diverges when $alpha leq 1$ so it follows that our original integral diverges when $alpha leq 1$.
Now what? I'm stuck.
integration improper-integrals
$endgroup$
$begingroup$
You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
$endgroup$
– Ben W
Jan 1 at 22:10
$begingroup$
How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
$endgroup$
– Oria Gruber
Jan 1 at 22:14
$begingroup$
Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
$endgroup$
– Ben W
Jan 1 at 22:17
2
$begingroup$
ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
$endgroup$
– Will Jagy
Jan 1 at 22:26
$begingroup$
Make it an answer @WillJagy, I will accept.
$endgroup$
– Oria Gruber
Jan 1 at 22:59
|
show 1 more comment
$begingroup$
I wish to find for which $alpha in mathbb R$ the integral $int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy$ converges.
What I tried:
Firstly notice that the integrand is always positive since $xy leq x^2+y^2$.
If $alpha leq 0$ the integral trivially diverges. Assume $alpha >0$. Then:
$int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy geq int_{mathbb R^2}frac{1}{(1+2x^2+2y^2)^alpha}dxdy= 2piint_{0}^{infty}frac{r}{(1+2r^2)^alpha}dr = piint_{0}^{infty}frac{1}{(1+2t)^alpha}dt = frac{pi}{2}int_{1}^{infty}frac{1}{s^alpha}ds$
This integral diverges when $alpha leq 1$ so it follows that our original integral diverges when $alpha leq 1$.
Now what? I'm stuck.
integration improper-integrals
$endgroup$
I wish to find for which $alpha in mathbb R$ the integral $int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy$ converges.
What I tried:
Firstly notice that the integrand is always positive since $xy leq x^2+y^2$.
If $alpha leq 0$ the integral trivially diverges. Assume $alpha >0$. Then:
$int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy geq int_{mathbb R^2}frac{1}{(1+2x^2+2y^2)^alpha}dxdy= 2piint_{0}^{infty}frac{r}{(1+2r^2)^alpha}dr = piint_{0}^{infty}frac{1}{(1+2t)^alpha}dt = frac{pi}{2}int_{1}^{infty}frac{1}{s^alpha}ds$
This integral diverges when $alpha leq 1$ so it follows that our original integral diverges when $alpha leq 1$.
Now what? I'm stuck.
integration improper-integrals
integration improper-integrals
asked Jan 1 at 22:04


Oria GruberOria Gruber
6,50732360
6,50732360
$begingroup$
You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
$endgroup$
– Ben W
Jan 1 at 22:10
$begingroup$
How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
$endgroup$
– Oria Gruber
Jan 1 at 22:14
$begingroup$
Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
$endgroup$
– Ben W
Jan 1 at 22:17
2
$begingroup$
ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
$endgroup$
– Will Jagy
Jan 1 at 22:26
$begingroup$
Make it an answer @WillJagy, I will accept.
$endgroup$
– Oria Gruber
Jan 1 at 22:59
|
show 1 more comment
$begingroup$
You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
$endgroup$
– Ben W
Jan 1 at 22:10
$begingroup$
How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
$endgroup$
– Oria Gruber
Jan 1 at 22:14
$begingroup$
Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
$endgroup$
– Ben W
Jan 1 at 22:17
2
$begingroup$
ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
$endgroup$
– Will Jagy
Jan 1 at 22:26
$begingroup$
Make it an answer @WillJagy, I will accept.
$endgroup$
– Oria Gruber
Jan 1 at 22:59
$begingroup$
You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
$endgroup$
– Ben W
Jan 1 at 22:10
$begingroup$
You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
$endgroup$
– Ben W
Jan 1 at 22:10
$begingroup$
How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
$endgroup$
– Oria Gruber
Jan 1 at 22:14
$begingroup$
How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
$endgroup$
– Oria Gruber
Jan 1 at 22:14
$begingroup$
Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
$endgroup$
– Ben W
Jan 1 at 22:17
$begingroup$
Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
$endgroup$
– Ben W
Jan 1 at 22:17
2
2
$begingroup$
ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
$endgroup$
– Will Jagy
Jan 1 at 22:26
$begingroup$
ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
$endgroup$
– Will Jagy
Jan 1 at 22:26
$begingroup$
Make it an answer @WillJagy, I will accept.
$endgroup$
– Oria Gruber
Jan 1 at 22:59
$begingroup$
Make it an answer @WillJagy, I will accept.
$endgroup$
– Oria Gruber
Jan 1 at 22:59
|
show 1 more comment
3 Answers
3
active
oldest
votes
$begingroup$
$$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$
$endgroup$
add a comment |
$begingroup$
Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
$$ q(x,y) = (x,y) Q (x,y)^T. $$
By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
equals
$$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
or
$$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
or
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
$$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
In arbitrary dimension,
$$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$
$endgroup$
$begingroup$
Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
$endgroup$
– Jack D'Aurizio
Jan 1 at 23:22
add a comment |
$begingroup$
Hint:
For $alpha > 0$, changing to polar coordinates,
$$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$
and as $r to infty$
$$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058919%2fwhen-does-int-frac11x2xyy2-alpha-converge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$
$endgroup$
add a comment |
$begingroup$
$$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$
$endgroup$
add a comment |
$begingroup$
$$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$
$endgroup$
$$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$
answered Jan 1 at 23:28
Will JagyWill Jagy
102k5100199
102k5100199
add a comment |
add a comment |
$begingroup$
Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
$$ q(x,y) = (x,y) Q (x,y)^T. $$
By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
equals
$$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
or
$$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
or
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
$$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
In arbitrary dimension,
$$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$
$endgroup$
$begingroup$
Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
$endgroup$
– Jack D'Aurizio
Jan 1 at 23:22
add a comment |
$begingroup$
Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
$$ q(x,y) = (x,y) Q (x,y)^T. $$
By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
equals
$$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
or
$$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
or
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
$$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
In arbitrary dimension,
$$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$
$endgroup$
$begingroup$
Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
$endgroup$
– Jack D'Aurizio
Jan 1 at 23:22
add a comment |
$begingroup$
Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
$$ q(x,y) = (x,y) Q (x,y)^T. $$
By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
equals
$$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
or
$$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
or
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
$$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
In arbitrary dimension,
$$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$
$endgroup$
Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
$$ q(x,y) = (x,y) Q (x,y)^T. $$
By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
equals
$$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
or
$$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
or
$$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
$$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
In arbitrary dimension,
$$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$
edited Jan 1 at 23:15
answered Jan 1 at 23:02


Jack D'AurizioJack D'Aurizio
288k33280659
288k33280659
$begingroup$
Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
$endgroup$
– Jack D'Aurizio
Jan 1 at 23:22
add a comment |
$begingroup$
Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
$endgroup$
– Jack D'Aurizio
Jan 1 at 23:22
$begingroup$
Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
$endgroup$
– Jack D'Aurizio
Jan 1 at 23:22
$begingroup$
Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
$endgroup$
– Jack D'Aurizio
Jan 1 at 23:22
add a comment |
$begingroup$
Hint:
For $alpha > 0$, changing to polar coordinates,
$$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$
and as $r to infty$
$$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$
$endgroup$
add a comment |
$begingroup$
Hint:
For $alpha > 0$, changing to polar coordinates,
$$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$
and as $r to infty$
$$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$
$endgroup$
add a comment |
$begingroup$
Hint:
For $alpha > 0$, changing to polar coordinates,
$$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$
and as $r to infty$
$$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$
$endgroup$
Hint:
For $alpha > 0$, changing to polar coordinates,
$$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$
and as $r to infty$
$$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$
edited Jan 2 at 20:01
answered Jan 1 at 22:32
RRLRRL
49.5k42573
49.5k42573
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058919%2fwhen-does-int-frac11x2xyy2-alpha-converge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
$endgroup$
– Ben W
Jan 1 at 22:10
$begingroup$
How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
$endgroup$
– Oria Gruber
Jan 1 at 22:14
$begingroup$
Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
$endgroup$
– Ben W
Jan 1 at 22:17
2
$begingroup$
ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
$endgroup$
– Will Jagy
Jan 1 at 22:26
$begingroup$
Make it an answer @WillJagy, I will accept.
$endgroup$
– Oria Gruber
Jan 1 at 22:59