When does $int frac{1}{(1+x^2+xy+y^2)^alpha}$ converge?












2












$begingroup$


I wish to find for which $alpha in mathbb R$ the integral $int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy$ converges.



What I tried:



Firstly notice that the integrand is always positive since $xy leq x^2+y^2$.



If $alpha leq 0$ the integral trivially diverges. Assume $alpha >0$. Then:



$int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy geq int_{mathbb R^2}frac{1}{(1+2x^2+2y^2)^alpha}dxdy= 2piint_{0}^{infty}frac{r}{(1+2r^2)^alpha}dr = piint_{0}^{infty}frac{1}{(1+2t)^alpha}dt = frac{pi}{2}int_{1}^{infty}frac{1}{s^alpha}ds$



This integral diverges when $alpha leq 1$ so it follows that our original integral diverges when $alpha leq 1$.



Now what? I'm stuck.










share|cite|improve this question









$endgroup$












  • $begingroup$
    You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
    $endgroup$
    – Ben W
    Jan 1 at 22:10












  • $begingroup$
    How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
    $endgroup$
    – Oria Gruber
    Jan 1 at 22:14










  • $begingroup$
    Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
    $endgroup$
    – Ben W
    Jan 1 at 22:17








  • 2




    $begingroup$
    ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
    $endgroup$
    – Will Jagy
    Jan 1 at 22:26










  • $begingroup$
    Make it an answer @WillJagy, I will accept.
    $endgroup$
    – Oria Gruber
    Jan 1 at 22:59
















2












$begingroup$


I wish to find for which $alpha in mathbb R$ the integral $int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy$ converges.



What I tried:



Firstly notice that the integrand is always positive since $xy leq x^2+y^2$.



If $alpha leq 0$ the integral trivially diverges. Assume $alpha >0$. Then:



$int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy geq int_{mathbb R^2}frac{1}{(1+2x^2+2y^2)^alpha}dxdy= 2piint_{0}^{infty}frac{r}{(1+2r^2)^alpha}dr = piint_{0}^{infty}frac{1}{(1+2t)^alpha}dt = frac{pi}{2}int_{1}^{infty}frac{1}{s^alpha}ds$



This integral diverges when $alpha leq 1$ so it follows that our original integral diverges when $alpha leq 1$.



Now what? I'm stuck.










share|cite|improve this question









$endgroup$












  • $begingroup$
    You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
    $endgroup$
    – Ben W
    Jan 1 at 22:10












  • $begingroup$
    How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
    $endgroup$
    – Oria Gruber
    Jan 1 at 22:14










  • $begingroup$
    Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
    $endgroup$
    – Ben W
    Jan 1 at 22:17








  • 2




    $begingroup$
    ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
    $endgroup$
    – Will Jagy
    Jan 1 at 22:26










  • $begingroup$
    Make it an answer @WillJagy, I will accept.
    $endgroup$
    – Oria Gruber
    Jan 1 at 22:59














2












2








2


2



$begingroup$


I wish to find for which $alpha in mathbb R$ the integral $int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy$ converges.



What I tried:



Firstly notice that the integrand is always positive since $xy leq x^2+y^2$.



If $alpha leq 0$ the integral trivially diverges. Assume $alpha >0$. Then:



$int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy geq int_{mathbb R^2}frac{1}{(1+2x^2+2y^2)^alpha}dxdy= 2piint_{0}^{infty}frac{r}{(1+2r^2)^alpha}dr = piint_{0}^{infty}frac{1}{(1+2t)^alpha}dt = frac{pi}{2}int_{1}^{infty}frac{1}{s^alpha}ds$



This integral diverges when $alpha leq 1$ so it follows that our original integral diverges when $alpha leq 1$.



Now what? I'm stuck.










share|cite|improve this question









$endgroup$




I wish to find for which $alpha in mathbb R$ the integral $int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy$ converges.



What I tried:



Firstly notice that the integrand is always positive since $xy leq x^2+y^2$.



If $alpha leq 0$ the integral trivially diverges. Assume $alpha >0$. Then:



$int_{mathbb R^2}frac{1}{(1+x^2+xy+y^2)^alpha}dxdy geq int_{mathbb R^2}frac{1}{(1+2x^2+2y^2)^alpha}dxdy= 2piint_{0}^{infty}frac{r}{(1+2r^2)^alpha}dr = piint_{0}^{infty}frac{1}{(1+2t)^alpha}dt = frac{pi}{2}int_{1}^{infty}frac{1}{s^alpha}ds$



This integral diverges when $alpha leq 1$ so it follows that our original integral diverges when $alpha leq 1$.



Now what? I'm stuck.







integration improper-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 1 at 22:04









Oria GruberOria Gruber

6,50732360




6,50732360












  • $begingroup$
    You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
    $endgroup$
    – Ben W
    Jan 1 at 22:10












  • $begingroup$
    How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
    $endgroup$
    – Oria Gruber
    Jan 1 at 22:14










  • $begingroup$
    Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
    $endgroup$
    – Ben W
    Jan 1 at 22:17








  • 2




    $begingroup$
    ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
    $endgroup$
    – Will Jagy
    Jan 1 at 22:26










  • $begingroup$
    Make it an answer @WillJagy, I will accept.
    $endgroup$
    – Oria Gruber
    Jan 1 at 22:59


















  • $begingroup$
    You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
    $endgroup$
    – Ben W
    Jan 1 at 22:10












  • $begingroup$
    How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
    $endgroup$
    – Oria Gruber
    Jan 1 at 22:14










  • $begingroup$
    Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
    $endgroup$
    – Ben W
    Jan 1 at 22:17








  • 2




    $begingroup$
    ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
    $endgroup$
    – Will Jagy
    Jan 1 at 22:26










  • $begingroup$
    Make it an answer @WillJagy, I will accept.
    $endgroup$
    – Oria Gruber
    Jan 1 at 22:59
















$begingroup$
You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
$endgroup$
– Ben W
Jan 1 at 22:10






$begingroup$
You can actually compute the $dx$ part of the integral by completing the square and using trig sub. Also, be careful with your notation. Writing $int_{mathbb{R}^2}f(x,y);dx;dy$ is not quite right. You should either write $int_{mathbb{R}^2}f;dmu$ or else $int_{-infty}^inftyint_{-infty}^infty f(x,y);dx;dy$. The former case is harder to prove, as it will require something like Fubini Theorem.
$endgroup$
– Ben W
Jan 1 at 22:10














$begingroup$
How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
$endgroup$
– Oria Gruber
Jan 1 at 22:14




$begingroup$
How would you compute $int frac{1}{(1+(x+y)^2-xy)^alpha}$?
$endgroup$
– Oria Gruber
Jan 1 at 22:14












$begingroup$
Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
$endgroup$
– Ben W
Jan 1 at 22:17






$begingroup$
Complete the square in $x$ by rewriting $1+x^2+xy+y^2$ as $(x+y/2)^2+5y^2/4$. Then use $x=(sqrt{5}/2)ytantheta$. It might not work but that is what I would try first. Note that you will have to split the $dy$ part of the integral into $y<0$ and $0<y$, and use a different sub for the $y<0$ part.
$endgroup$
– Ben W
Jan 1 at 22:17






2




2




$begingroup$
ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
$endgroup$
– Will Jagy
Jan 1 at 22:26




$begingroup$
ummm $$ frac{1}{2} left(x^2 + y^2 right) ; leq ; x^2 + xy + y^2 ; leq ; frac{3}{2} left(x^2 + y^2 right)$$
$endgroup$
– Will Jagy
Jan 1 at 22:26












$begingroup$
Make it an answer @WillJagy, I will accept.
$endgroup$
– Oria Gruber
Jan 1 at 22:59




$begingroup$
Make it an answer @WillJagy, I will accept.
$endgroup$
– Oria Gruber
Jan 1 at 22:59










3 Answers
3






active

oldest

votes


















1












$begingroup$

$$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
    $$ q(x,y) = (x,y) Q (x,y)^T. $$
    By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
    $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
    equals
    $$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
    or
    $$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
    or
    $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
    as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
    $$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
    In arbitrary dimension,



    $$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
      $endgroup$
      – Jack D'Aurizio
      Jan 1 at 23:22



















    1












    $begingroup$

    Hint:



    For $alpha > 0$, changing to polar coordinates,



    $$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$



    and as $r to infty$



    $$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058919%2fwhen-does-int-frac11x2xyy2-alpha-converge%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      $$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        $$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          $$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$






          share|cite|improve this answer









          $endgroup$



          $$ frac{1}{2} left( x^2 + y^2 right) leq ; x^2 + xy + y^2 ; leq frac{3}{2} left( x^2 + y^2 right) $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 1 at 23:28









          Will JagyWill Jagy

          102k5100199




          102k5100199























              1












              $begingroup$

              Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
              $$ q(x,y) = (x,y) Q (x,y)^T. $$
              By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
              $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
              equals
              $$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
              or
              $$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
              or
              $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
              as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
              $$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
              In arbitrary dimension,



              $$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
                $endgroup$
                – Jack D'Aurizio
                Jan 1 at 23:22
















              1












              $begingroup$

              Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
              $$ q(x,y) = (x,y) Q (x,y)^T. $$
              By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
              $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
              equals
              $$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
              or
              $$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
              or
              $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
              as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
              $$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
              In arbitrary dimension,



              $$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
                $endgroup$
                – Jack D'Aurizio
                Jan 1 at 23:22














              1












              1








              1





              $begingroup$

              Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
              $$ q(x,y) = (x,y) Q (x,y)^T. $$
              By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
              $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
              equals
              $$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
              or
              $$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
              or
              $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
              as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
              $$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
              In arbitrary dimension,



              $$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$






              share|cite|improve this answer











              $endgroup$



              Let $q(x,y)$ be a positive definite binary quadratic form with associated matrix $Q$, i.e.
              $$ q(x,y) = (x,y) Q (x,y)^T. $$
              By the spectral theorem $Q$ can be written as $J^{-1} D J$, where $D$ is a diagonal matrix with real entries $lambda_1,lambda_2>0$ and $left|det Jright| = 1$. It follows that
              $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+(x,y)J^{-1} D J(x,y)^T)^{alpha}},dx,dy $$
              equals
              $$iint_{mathbb{R}^2}frac{1}{(1+(x,y)D (x,y)^T)^{alpha}},dx,dy=iint_{mathbb{R}^2}frac{1}{(1+lambda_1 x^2+lambda_2 y^2)^{alpha}},dx,dy $$
              or
              $$ frac{1}{sqrt{lambda_1 lambda_2}}iint_{mathbb{R}^2}frac{1}{(1+x^2+y^2)^{alpha}},dx,dy=frac{2pi}{sqrt{det Q}}int_{0}^{+infty}frac{rho}{(1+rho^2)^{alpha}},drho$$
              or
              $$ iint_{mathbb{R}^2}frac{1}{(1+q(x,y))^{alpha}},dx,dy=frac{pi}{(alpha-1)sqrt{det Q}} tag{Q}$$
              as soon as $text{Re}(alpha)>1$. In your case $Q=left(begin{smallmatrix}1 & frac{1}{2}\ frac{1}{2} & 1end{smallmatrix}right)$, hence $det Q=frac{3}{4}$ and
              $$boxed{ iint_{mathbb{R}^2}frac{dx,dy}{(1+x^2+xy+y^2)^{alpha}}=frac{2pi}{sqrt{3}(alpha-1)}qquad text{for }text{Re}(alpha)>1.} $$
              In arbitrary dimension,



              $$int_{mathbb{R}^n}frac{dx_1cdots dx_n}{(1+q(x_1,ldots,x_n))^{alpha}}=frac{pi^{n/2}}{(alpha-1)Gamma(n/2)sqrt{det Q}}qquad text{for }text{Re}(alpha)>1.tag{Qn}$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jan 1 at 23:15

























              answered Jan 1 at 23:02









              Jack D'AurizioJack D'Aurizio

              288k33280659




              288k33280659












              • $begingroup$
                Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
                $endgroup$
                – Jack D'Aurizio
                Jan 1 at 23:22


















              • $begingroup$
                Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
                $endgroup$
                – Jack D'Aurizio
                Jan 1 at 23:22
















              $begingroup$
              Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
              $endgroup$
              – Jack D'Aurizio
              Jan 1 at 23:22




              $begingroup$
              Now I am wondering: given that $sqrt{det Q}$ term, is there a direct link between the spectral theorem and the central limit theorem for a class of distributions?
              $endgroup$
              – Jack D'Aurizio
              Jan 1 at 23:22











              1












              $begingroup$

              Hint:



              For $alpha > 0$, changing to polar coordinates,



              $$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$



              and as $r to infty$



              $$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Hint:



                For $alpha > 0$, changing to polar coordinates,



                $$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$



                and as $r to infty$



                $$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Hint:



                  For $alpha > 0$, changing to polar coordinates,



                  $$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$



                  and as $r to infty$



                  $$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$






                  share|cite|improve this answer











                  $endgroup$



                  Hint:



                  For $alpha > 0$, changing to polar coordinates,



                  $$frac{1}{(1+x^2+xy+y^2)^alpha} = frac{1}{(1+r^2+r^2cos theta sin theta)^alpha} = frac{1}{(1+r^2(1+sin (2theta)/2))^alpha} \ begin{cases}leqslant frac{1}{(1+r^2/2)^alpha}\ geqslant frac{1}{(1+3r^2/2)^alpha}end{cases}$$



                  and as $r to infty$



                  $$frac{r}{(1+r^2/2)^alpha} =mathcal{O}( r^{1-2alpha})$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 2 at 20:01

























                  answered Jan 1 at 22:32









                  RRLRRL

                  49.5k42573




                  49.5k42573






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058919%2fwhen-does-int-frac11x2xyy2-alpha-converge%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith