Convergence in probability towards a constant
$begingroup$
Prove that if a sequence $X_1,X_2..$ of random variables satisfies the following conditions: $$1.lim_{ntoinfty}mathbb{E}(X_n)=a,space ainmathbb{R}$$
$$2.lim_{ntoinfty}mathbb{V}(X_n)=0$$
Then this sequence converges in probability towards $a$: $$lim_{ntoinfty}mathbb{P}(|X_n-a|geqepsilon) = 0$$
convergence probability-limit-theorems expected-value
$endgroup$
add a comment |
$begingroup$
Prove that if a sequence $X_1,X_2..$ of random variables satisfies the following conditions: $$1.lim_{ntoinfty}mathbb{E}(X_n)=a,space ainmathbb{R}$$
$$2.lim_{ntoinfty}mathbb{V}(X_n)=0$$
Then this sequence converges in probability towards $a$: $$lim_{ntoinfty}mathbb{P}(|X_n-a|geqepsilon) = 0$$
convergence probability-limit-theorems expected-value
$endgroup$
add a comment |
$begingroup$
Prove that if a sequence $X_1,X_2..$ of random variables satisfies the following conditions: $$1.lim_{ntoinfty}mathbb{E}(X_n)=a,space ainmathbb{R}$$
$$2.lim_{ntoinfty}mathbb{V}(X_n)=0$$
Then this sequence converges in probability towards $a$: $$lim_{ntoinfty}mathbb{P}(|X_n-a|geqepsilon) = 0$$
convergence probability-limit-theorems expected-value
$endgroup$
Prove that if a sequence $X_1,X_2..$ of random variables satisfies the following conditions: $$1.lim_{ntoinfty}mathbb{E}(X_n)=a,space ainmathbb{R}$$
$$2.lim_{ntoinfty}mathbb{V}(X_n)=0$$
Then this sequence converges in probability towards $a$: $$lim_{ntoinfty}mathbb{P}(|X_n-a|geqepsilon) = 0$$
convergence probability-limit-theorems expected-value
convergence probability-limit-theorems expected-value
asked Jan 11 at 23:29


AromaTheLoopAromaTheLoop
444
444
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Fix $varepsilon>0$. Note that
$$
|X_n-a|leq |X_n-EX_n|+|EX_n-a|
$$
whence
$$
P(|X_n-a|gevarepsilon)leq P(|X_n-EX_n|gevarepsilon/2)+P(|EX_n-a|gevarepsilon/2) tag{1}
$$
The first term on the RHS of (1) goes to zero by the assumption that $text{Var}(X_n)to 0$ combined with Chebeshev's inequality. The second term on the RHS of (1) goes to zero by the assumption that $EX_nto a$ .
$endgroup$
add a comment |
$begingroup$
$E(X_n-a)^{2}=EX_n^{2}+a^{2}-2aEX_n =var(X_n)+(EX_n)^{2}+a^{2}-2aEX_n to 0+a^{2}+a^{2}-2a^{2}=0$. Hence $P{|X_n-a| geq epsilon} leq frac {E(X_n-a)^{2}} {epsilon^{2}} to 0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070443%2fconvergence-in-probability-towards-a-constant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Fix $varepsilon>0$. Note that
$$
|X_n-a|leq |X_n-EX_n|+|EX_n-a|
$$
whence
$$
P(|X_n-a|gevarepsilon)leq P(|X_n-EX_n|gevarepsilon/2)+P(|EX_n-a|gevarepsilon/2) tag{1}
$$
The first term on the RHS of (1) goes to zero by the assumption that $text{Var}(X_n)to 0$ combined with Chebeshev's inequality. The second term on the RHS of (1) goes to zero by the assumption that $EX_nto a$ .
$endgroup$
add a comment |
$begingroup$
Fix $varepsilon>0$. Note that
$$
|X_n-a|leq |X_n-EX_n|+|EX_n-a|
$$
whence
$$
P(|X_n-a|gevarepsilon)leq P(|X_n-EX_n|gevarepsilon/2)+P(|EX_n-a|gevarepsilon/2) tag{1}
$$
The first term on the RHS of (1) goes to zero by the assumption that $text{Var}(X_n)to 0$ combined with Chebeshev's inequality. The second term on the RHS of (1) goes to zero by the assumption that $EX_nto a$ .
$endgroup$
add a comment |
$begingroup$
Fix $varepsilon>0$. Note that
$$
|X_n-a|leq |X_n-EX_n|+|EX_n-a|
$$
whence
$$
P(|X_n-a|gevarepsilon)leq P(|X_n-EX_n|gevarepsilon/2)+P(|EX_n-a|gevarepsilon/2) tag{1}
$$
The first term on the RHS of (1) goes to zero by the assumption that $text{Var}(X_n)to 0$ combined with Chebeshev's inequality. The second term on the RHS of (1) goes to zero by the assumption that $EX_nto a$ .
$endgroup$
Fix $varepsilon>0$. Note that
$$
|X_n-a|leq |X_n-EX_n|+|EX_n-a|
$$
whence
$$
P(|X_n-a|gevarepsilon)leq P(|X_n-EX_n|gevarepsilon/2)+P(|EX_n-a|gevarepsilon/2) tag{1}
$$
The first term on the RHS of (1) goes to zero by the assumption that $text{Var}(X_n)to 0$ combined with Chebeshev's inequality. The second term on the RHS of (1) goes to zero by the assumption that $EX_nto a$ .
answered Jan 12 at 0:08


Foobaz JohnFoobaz John
22.1k41352
22.1k41352
add a comment |
add a comment |
$begingroup$
$E(X_n-a)^{2}=EX_n^{2}+a^{2}-2aEX_n =var(X_n)+(EX_n)^{2}+a^{2}-2aEX_n to 0+a^{2}+a^{2}-2a^{2}=0$. Hence $P{|X_n-a| geq epsilon} leq frac {E(X_n-a)^{2}} {epsilon^{2}} to 0$.
$endgroup$
add a comment |
$begingroup$
$E(X_n-a)^{2}=EX_n^{2}+a^{2}-2aEX_n =var(X_n)+(EX_n)^{2}+a^{2}-2aEX_n to 0+a^{2}+a^{2}-2a^{2}=0$. Hence $P{|X_n-a| geq epsilon} leq frac {E(X_n-a)^{2}} {epsilon^{2}} to 0$.
$endgroup$
add a comment |
$begingroup$
$E(X_n-a)^{2}=EX_n^{2}+a^{2}-2aEX_n =var(X_n)+(EX_n)^{2}+a^{2}-2aEX_n to 0+a^{2}+a^{2}-2a^{2}=0$. Hence $P{|X_n-a| geq epsilon} leq frac {E(X_n-a)^{2}} {epsilon^{2}} to 0$.
$endgroup$
$E(X_n-a)^{2}=EX_n^{2}+a^{2}-2aEX_n =var(X_n)+(EX_n)^{2}+a^{2}-2aEX_n to 0+a^{2}+a^{2}-2a^{2}=0$. Hence $P{|X_n-a| geq epsilon} leq frac {E(X_n-a)^{2}} {epsilon^{2}} to 0$.
answered Jan 11 at 23:33


Kavi Rama MurthyKavi Rama Murthy
59.1k42161
59.1k42161
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070443%2fconvergence-in-probability-towards-a-constant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown