Simplify integral considering only the real part
$begingroup$
I happened to stumble on the following simplification of an integral:
$$ frac{1}{pi} int_{0}^{infty} dx e^{-ax} cdot cos(kx) = frac{1}{pi} Re left[ int_{0}^{infty} dx e^{x (ik - a)} right] $$
According to my reasoning: $ cos(kx) = frac{1}{2} left( e^{ikx} + e^{-ikx} right) $, so the term on the exponent on the right side comes somehow from the first term of the complex form of $cos(kx)$, but the second term gets cancelled, why?
integration complex-analysis analysis complex-integration
$endgroup$
add a comment |
$begingroup$
I happened to stumble on the following simplification of an integral:
$$ frac{1}{pi} int_{0}^{infty} dx e^{-ax} cdot cos(kx) = frac{1}{pi} Re left[ int_{0}^{infty} dx e^{x (ik - a)} right] $$
According to my reasoning: $ cos(kx) = frac{1}{2} left( e^{ikx} + e^{-ikx} right) $, so the term on the exponent on the right side comes somehow from the first term of the complex form of $cos(kx)$, but the second term gets cancelled, why?
integration complex-analysis analysis complex-integration
$endgroup$
add a comment |
$begingroup$
I happened to stumble on the following simplification of an integral:
$$ frac{1}{pi} int_{0}^{infty} dx e^{-ax} cdot cos(kx) = frac{1}{pi} Re left[ int_{0}^{infty} dx e^{x (ik - a)} right] $$
According to my reasoning: $ cos(kx) = frac{1}{2} left( e^{ikx} + e^{-ikx} right) $, so the term on the exponent on the right side comes somehow from the first term of the complex form of $cos(kx)$, but the second term gets cancelled, why?
integration complex-analysis analysis complex-integration
$endgroup$
I happened to stumble on the following simplification of an integral:
$$ frac{1}{pi} int_{0}^{infty} dx e^{-ax} cdot cos(kx) = frac{1}{pi} Re left[ int_{0}^{infty} dx e^{x (ik - a)} right] $$
According to my reasoning: $ cos(kx) = frac{1}{2} left( e^{ikx} + e^{-ikx} right) $, so the term on the exponent on the right side comes somehow from the first term of the complex form of $cos(kx)$, but the second term gets cancelled, why?
integration complex-analysis analysis complex-integration
integration complex-analysis analysis complex-integration
asked Jan 12 at 8:45
LeroyLeroy
1267
1267
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Consider first $e^{ikx} = cos(kx) + i sin(kx)$ then you can easily deduce that
$$
Re(e^{ikx}) = cos(kx).
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070707%2fsimplify-integral-considering-only-the-real-part%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider first $e^{ikx} = cos(kx) + i sin(kx)$ then you can easily deduce that
$$
Re(e^{ikx}) = cos(kx).
$$
$endgroup$
add a comment |
$begingroup$
Consider first $e^{ikx} = cos(kx) + i sin(kx)$ then you can easily deduce that
$$
Re(e^{ikx}) = cos(kx).
$$
$endgroup$
add a comment |
$begingroup$
Consider first $e^{ikx} = cos(kx) + i sin(kx)$ then you can easily deduce that
$$
Re(e^{ikx}) = cos(kx).
$$
$endgroup$
Consider first $e^{ikx} = cos(kx) + i sin(kx)$ then you can easily deduce that
$$
Re(e^{ikx}) = cos(kx).
$$
answered Jan 12 at 8:59
WarreGWarreG
20819
20819
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070707%2fsimplify-integral-considering-only-the-real-part%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown