Independence system/ graph-theory












1












$begingroup$


$ (E,S)$ is an independence system with $ w: E rightarrow mathbb{R_+}$.



$E= { e_1,...,e_m} $ is the set of edges with $ w(e_1) geq....geq w(e_m), w(e_{m+1}):=0$. Define the set: $ E_i:= { e_1,...,e_i}$ and $ T subset E$ with $ w'(T) = sum_{ e in T} w(e)$.
I will show: $$ w'(T)= sum_{ i=1}^m |T cap E_i|big(w(e_i)-w(e_{i+1})big)$$



Can somebody give me a hint to do that?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    $ (E,S)$ is an independence system with $ w: E rightarrow mathbb{R_+}$.



    $E= { e_1,...,e_m} $ is the set of edges with $ w(e_1) geq....geq w(e_m), w(e_{m+1}):=0$. Define the set: $ E_i:= { e_1,...,e_i}$ and $ T subset E$ with $ w'(T) = sum_{ e in T} w(e)$.
    I will show: $$ w'(T)= sum_{ i=1}^m |T cap E_i|big(w(e_i)-w(e_{i+1})big)$$



    Can somebody give me a hint to do that?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      $ (E,S)$ is an independence system with $ w: E rightarrow mathbb{R_+}$.



      $E= { e_1,...,e_m} $ is the set of edges with $ w(e_1) geq....geq w(e_m), w(e_{m+1}):=0$. Define the set: $ E_i:= { e_1,...,e_i}$ and $ T subset E$ with $ w'(T) = sum_{ e in T} w(e)$.
      I will show: $$ w'(T)= sum_{ i=1}^m |T cap E_i|big(w(e_i)-w(e_{i+1})big)$$



      Can somebody give me a hint to do that?










      share|cite|improve this question











      $endgroup$




      $ (E,S)$ is an independence system with $ w: E rightarrow mathbb{R_+}$.



      $E= { e_1,...,e_m} $ is the set of edges with $ w(e_1) geq....geq w(e_m), w(e_{m+1}):=0$. Define the set: $ E_i:= { e_1,...,e_i}$ and $ T subset E$ with $ w'(T) = sum_{ e in T} w(e)$.
      I will show: $$ w'(T)= sum_{ i=1}^m |T cap E_i|big(w(e_i)-w(e_{i+1})big)$$



      Can somebody give me a hint to do that?







      combinatorics graph-theory independence matroids






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 12 at 16:01









      greedoid

      42k1152105




      42k1152105










      asked Jan 12 at 9:32









      Leon1998Leon1998

      337




      337






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.



          Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$



          then



          begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
          &+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
          &=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
          &=&w(j)-w(e_{m+1})\
          &=&w(j)-0\
          &= & w'(T_j)
          end{eqnarray}



          So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:



          For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:



          begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
          &=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
          &= &sum _{jin T}w'(T_j)\
          &= & w'(T)
          end{eqnarray}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
            $endgroup$
            – Leon1998
            Jan 12 at 13:17













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070734%2findependence-system-graph-theory%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.



          Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$



          then



          begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
          &+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
          &=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
          &=&w(j)-w(e_{m+1})\
          &=&w(j)-0\
          &= & w'(T_j)
          end{eqnarray}



          So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:



          For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:



          begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
          &=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
          &= &sum _{jin T}w'(T_j)\
          &= & w'(T)
          end{eqnarray}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
            $endgroup$
            – Leon1998
            Jan 12 at 13:17


















          1












          $begingroup$

          It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.



          Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$



          then



          begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
          &+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
          &=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
          &=&w(j)-w(e_{m+1})\
          &=&w(j)-0\
          &= & w'(T_j)
          end{eqnarray}



          So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:



          For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:



          begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
          &=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
          &= &sum _{jin T}w'(T_j)\
          &= & w'(T)
          end{eqnarray}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
            $endgroup$
            – Leon1998
            Jan 12 at 13:17
















          1












          1








          1





          $begingroup$

          It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.



          Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$



          then



          begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
          &+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
          &=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
          &=&w(j)-w(e_{m+1})\
          &=&w(j)-0\
          &= & w'(T_j)
          end{eqnarray}



          So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:



          For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:



          begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
          &=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
          &= &sum _{jin T}w'(T_j)\
          &= & w'(T)
          end{eqnarray}






          share|cite|improve this answer











          $endgroup$



          It is enough to think what is $w'(T_j)$ where $T_j ={e_j}$.



          Let $$w''(T_j)=sum_{ i=1}^m |T_j cap E_i|big(w(e_i)-w(e_{i+1})big)$$



          then



          begin{eqnarray}w''(T_j) &=&underbrace{|T_j cap E_1|}_{=0}big(w(e_1)-w(e_{2})big)+...+underbrace{|T_j cap E_{j-1}|}_{=0}big(w(e_{j-1})-w(e_{j})big) +\
          &+& underbrace{|T_j cap E_{j}|}_{=1}big(w(e_{j})-w(e_{j+1})big)+...+underbrace{|T_j cap E_{m}|}_{=1}big(w(e_m)-w(e_{m+1})big) \
          &=& underbrace{0+0+...+0}_{j-1}+big(w(e_{j})-w(e_{j+1})big)+...+big(w(e_m)-w(e_{m+1})big) \
          &=&w(j)-w(e_{m+1})\
          &=&w(j)-0\
          &= & w'(T_j)
          end{eqnarray}



          So $w'$ and $w''$ are the same functions on singeltons and now should not be difficult to see that they are the same functions:



          For every $T$ and every $i$ we have: $$|Tcap E_i| = sum _{jin T}|T_jcap E_i|$$ so:



          begin{eqnarray}w''(T) &=& sum _{i=1}^mcolor{red}{Big(}sum _{jin T}|T_jcap E_i|color{red}{Big)}big(w(e_i)-w(e_{i+1})big)\
          &=& sum _{jin T}color{red}{Big(}sum _{i=1}^m|T_jcap E_i|big(w(e_i)-w(e_{i+1})big)color{red}{Big)}\
          &= &sum _{jin T}w'(T_j)\
          &= & w'(T)
          end{eqnarray}







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 12 at 10:56

























          answered Jan 12 at 10:29









          greedoidgreedoid

          42k1152105




          42k1152105












          • $begingroup$
            Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
            $endgroup$
            – Leon1998
            Jan 12 at 13:17




















          • $begingroup$
            Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
            $endgroup$
            – Leon1998
            Jan 12 at 13:17


















          $begingroup$
          Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
          $endgroup$
          – Leon1998
          Jan 12 at 13:17






          $begingroup$
          Why is it enough to consider only 1 edge $e_j$? Thank you very much for your proof:) I try understand what u have done.
          $endgroup$
          – Leon1998
          Jan 12 at 13:17




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070734%2findependence-system-graph-theory%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]