On an inequality involving operator norm of matrices and singular value












3












$begingroup$


Let $A, E in M_n(mathbb C)$ be as in this question On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$ .



How to prove that $dfrac {||A^{-1}b-(A+E)^{-1}b||_2}{||A^{-1}b||_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}$ ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
    $endgroup$
    – OldGodzilla
    Jan 16 at 16:32
















3












$begingroup$


Let $A, E in M_n(mathbb C)$ be as in this question On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$ .



How to prove that $dfrac {||A^{-1}b-(A+E)^{-1}b||_2}{||A^{-1}b||_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}$ ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
    $endgroup$
    – OldGodzilla
    Jan 16 at 16:32














3












3








3





$begingroup$


Let $A, E in M_n(mathbb C)$ be as in this question On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$ .



How to prove that $dfrac {||A^{-1}b-(A+E)^{-1}b||_2}{||A^{-1}b||_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}$ ?










share|cite|improve this question











$endgroup$




Let $A, E in M_n(mathbb C)$ be as in this question On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$ .



How to prove that $dfrac {||A^{-1}b-(A+E)^{-1}b||_2}{||A^{-1}b||_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}$ ?







linear-algebra matrices norm svd singularvalues






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 7:36







user521337

















asked Jan 12 at 7:00









user521337user521337

1,1801416




1,1801416












  • $begingroup$
    I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
    $endgroup$
    – OldGodzilla
    Jan 16 at 16:32


















  • $begingroup$
    I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
    $endgroup$
    – OldGodzilla
    Jan 16 at 16:32
















$begingroup$
I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
$endgroup$
– OldGodzilla
Jan 16 at 16:32




$begingroup$
I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
$endgroup$
– OldGodzilla
Jan 16 at 16:32










1 Answer
1






active

oldest

votes


















0












$begingroup$

I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that



$$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



Put $d=frac{c}{|c|_2}$. It suffices to prove that



$$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that



$$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$



Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that



$${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$



Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$



It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$



Indeed,



$$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$



Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070661%2fon-an-inequality-involving-operator-norm-of-matrices-and-singular-value%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that



    $$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



    Put $d=frac{c}{|c|_2}$. It suffices to prove that



    $$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



    Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that



    $$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$



    Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that



    $${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$



    Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$



    It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$



    Indeed,



    $$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$



    Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that



      $$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



      Put $d=frac{c}{|c|_2}$. It suffices to prove that



      $$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



      Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that



      $$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$



      Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that



      $${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$



      Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$



      It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$



      Indeed,



      $$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$



      Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that



        $$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



        Put $d=frac{c}{|c|_2}$. It suffices to prove that



        $$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



        Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that



        $$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$



        Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that



        $${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$



        Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$



        It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$



        Indeed,



        $$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$



        Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.






        share|cite|improve this answer









        $endgroup$



        I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that



        $$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



        Put $d=frac{c}{|c|_2}$. It suffices to prove that



        $$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$



        Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that



        $$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$



        Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that



        $${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$



        Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$



        It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$



        Indeed,



        $$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$



        Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 17 at 11:29









        Alex RavskyAlex Ravsky

        41.1k32282




        41.1k32282






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070661%2fon-an-inequality-involving-operator-norm-of-matrices-and-singular-value%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$