On an inequality involving operator norm of matrices and singular value
$begingroup$
Let $A, E in M_n(mathbb C)$ be as in this question On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$ .
How to prove that $dfrac {||A^{-1}b-(A+E)^{-1}b||_2}{||A^{-1}b||_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}$ ?
linear-algebra matrices norm svd singularvalues
$endgroup$
add a comment |
$begingroup$
Let $A, E in M_n(mathbb C)$ be as in this question On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$ .
How to prove that $dfrac {||A^{-1}b-(A+E)^{-1}b||_2}{||A^{-1}b||_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}$ ?
linear-algebra matrices norm svd singularvalues
$endgroup$
$begingroup$
I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
$endgroup$
– OldGodzilla
Jan 16 at 16:32
add a comment |
$begingroup$
Let $A, E in M_n(mathbb C)$ be as in this question On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$ .
How to prove that $dfrac {||A^{-1}b-(A+E)^{-1}b||_2}{||A^{-1}b||_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}$ ?
linear-algebra matrices norm svd singularvalues
$endgroup$
Let $A, E in M_n(mathbb C)$ be as in this question On invertibility of $A+E$ where $||E||_2<$ smallest singular value of $A$ and $||A^{-1}E||_2<1$ .
How to prove that $dfrac {||A^{-1}b-(A+E)^{-1}b||_2}{||A^{-1}b||_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}$ ?
linear-algebra matrices norm svd singularvalues
linear-algebra matrices norm svd singularvalues
edited Jan 12 at 7:36
user521337
asked Jan 12 at 7:00
user521337user521337
1,1801416
1,1801416
$begingroup$
I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
$endgroup$
– OldGodzilla
Jan 16 at 16:32
add a comment |
$begingroup$
I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
$endgroup$
– OldGodzilla
Jan 16 at 16:32
$begingroup$
I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
$endgroup$
– OldGodzilla
Jan 16 at 16:32
$begingroup$
I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
$endgroup$
– OldGodzilla
Jan 16 at 16:32
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that
$$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Put $d=frac{c}{|c|_2}$. It suffices to prove that
$$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that
$$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$
Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that
$${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$
Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$
It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$
Indeed,
$$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$
Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070661%2fon-an-inequality-involving-operator-norm-of-matrices-and-singular-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that
$$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Put $d=frac{c}{|c|_2}$. It suffices to prove that
$$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that
$$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$
Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that
$${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$
Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$
It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$
Indeed,
$$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$
Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.
$endgroup$
add a comment |
$begingroup$
I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that
$$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Put $d=frac{c}{|c|_2}$. It suffices to prove that
$$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that
$$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$
Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that
$${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$
Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$
It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$
Indeed,
$$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$
Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.
$endgroup$
add a comment |
$begingroup$
I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that
$$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Put $d=frac{c}{|c|_2}$. It suffices to prove that
$$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that
$$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$
Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that
$${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$
Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$
It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$
Indeed,
$$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$
Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.
$endgroup$
I assume that $bin Bbb C^n$ is an arbitrary non-zero vector and $$sigma_min(M)=inf {|Mx|_2: xinBbb C^nmbox{ and }|x|_2=1}$$ for each $MinBbb M_n(Bbb C)$. Put $c=(A+E)^{-1}b$. Then $A^{-1}b=A^{-1}(A+E)c=c+A^{-1}Ec$. Now we have to prove that
$$dfrac {|A^{-1}Ec |_2}{| c+A^{-1}Ec |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Put $d=frac{c}{|c|_2}$. It suffices to prove that
$$dfrac {|A^{-1}Ed |_2}{| d+A^{-1}Ed |_2}le dfrac {||E||_2||A^{-1}||_2}{1-frac {||E||_2}{sigma_min}}.$$
Since $|A^{-1}Ed |_2le ||E||_2||A^{-1}||_2$, it suffices to prove that
$$1-frac {||E||_2}{sigma_min}le | d+A^{-1}Ed |_2.$$
Since $| d+A^{-1}Ed |_2ge | d|_2- |A^{-1}Ed |_2=1-| A^{-1}Ed |_2$, it suffices to prove that
$${sigma_min}| A^{-1}Ed |_2le ||E||_2.$$
Since $$| A^{-1}Ed |_2le | A^{-1} |_2|Ed |_2le | A^{-1} |_2|E |_2|d|_2=| A^{-1} |_2|E |_2,$$
It suffices to check that $${sigma_min}| A^{-1}|_2le 1.$$
Indeed,
$$sigma_min| A^{-1}|_2=sigma_minsup {|A^{-1}x|_2: xinBbb C^nmbox{ and }|x|_2=1}.$$
Let $xinBbb C^n$ and $|x|_2=1$. We have $$1=|x|_2=|AA^{-1}x|_2ge sigma_{min} |A^{-1}x|_2,$$ so $sigma_min| A^{-1}|_2le 1$.
answered Jan 17 at 11:29
Alex RavskyAlex Ravsky
41.1k32282
41.1k32282
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070661%2fon-an-inequality-involving-operator-norm-of-matrices-and-singular-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't have a whole lot of time to figure it out, but have you tried anything using the geometric series representation of the inverse when the spectral radius is less than one? The right hand side looks oddly reminiscent of the value obtained when summing up such a series.
$endgroup$
– OldGodzilla
Jan 16 at 16:32