Determinant: question on proof
$begingroup$
For every matrix $A in M_n(K)$: $det(A) = sum_{sigma in S} operatorname{sgn}(sigma)a_{sigma(1),1} cdots a_{sigma(n),n}$.
Proof: Consider $B = (b_{ij}) in M_n(K)$. Then $ C := AB in M_n(K) $ with $C = (C_1,dots,C_n) $ and $C_k = b_{1k}A_1 + cdots + b_{nk}A_n$. Using the linearity of the determinant we get: $underline{det(C_1,dots,C_n) = sum_{i_1,i_2,dots,i_n} b_{i_1,1}b_{i_2,2}cdots b_{i_n,n} det(A_{i_1},dots,A_{i_n}) }$, where all $i_j$ are independently range from $1$ to $n$.
If $i_k = i_{ell}$, matrix $(A_{i_1},dots,A_{i_n})$ will have two identical columns and therefore $det(A_{i_1},dots,A_{i_n}) = 0$. Only the terms with $sigma = (i_1,dots,i_n)$ a permutation of ${1,dots,n}$ appear in the sum. Using $det(A_{i_1},dots,A_{i_n}) = operatorname{sgn}(sigma)det(A)$, we get:
$underline{det(C_1,dots,C_n) = det(A_{1},dots,A_{n}) sum_{sigmain S} operatorname{sgn}(sigma)b_{sigma(1),1}b_{sigma(2),2}cdots b_{sigma(n),n} }$. With $S$ the set of all permutations of ${1,dots,n}$.
The given statement can be proven by setting $A = I_n$ in the above.
I'm having troubles understanding where the underlined parts come from, especially the first expression for $det(C)$. Hopefully, someone could help me.
linear-algebra
$endgroup$
add a comment |
$begingroup$
For every matrix $A in M_n(K)$: $det(A) = sum_{sigma in S} operatorname{sgn}(sigma)a_{sigma(1),1} cdots a_{sigma(n),n}$.
Proof: Consider $B = (b_{ij}) in M_n(K)$. Then $ C := AB in M_n(K) $ with $C = (C_1,dots,C_n) $ and $C_k = b_{1k}A_1 + cdots + b_{nk}A_n$. Using the linearity of the determinant we get: $underline{det(C_1,dots,C_n) = sum_{i_1,i_2,dots,i_n} b_{i_1,1}b_{i_2,2}cdots b_{i_n,n} det(A_{i_1},dots,A_{i_n}) }$, where all $i_j$ are independently range from $1$ to $n$.
If $i_k = i_{ell}$, matrix $(A_{i_1},dots,A_{i_n})$ will have two identical columns and therefore $det(A_{i_1},dots,A_{i_n}) = 0$. Only the terms with $sigma = (i_1,dots,i_n)$ a permutation of ${1,dots,n}$ appear in the sum. Using $det(A_{i_1},dots,A_{i_n}) = operatorname{sgn}(sigma)det(A)$, we get:
$underline{det(C_1,dots,C_n) = det(A_{1},dots,A_{n}) sum_{sigmain S} operatorname{sgn}(sigma)b_{sigma(1),1}b_{sigma(2),2}cdots b_{sigma(n),n} }$. With $S$ the set of all permutations of ${1,dots,n}$.
The given statement can be proven by setting $A = I_n$ in the above.
I'm having troubles understanding where the underlined parts come from, especially the first expression for $det(C)$. Hopefully, someone could help me.
linear-algebra
$endgroup$
1
$begingroup$
First expression is just multilinearity of the determinant.
$endgroup$
– Dietrich Burde
Jan 12 at 9:18
add a comment |
$begingroup$
For every matrix $A in M_n(K)$: $det(A) = sum_{sigma in S} operatorname{sgn}(sigma)a_{sigma(1),1} cdots a_{sigma(n),n}$.
Proof: Consider $B = (b_{ij}) in M_n(K)$. Then $ C := AB in M_n(K) $ with $C = (C_1,dots,C_n) $ and $C_k = b_{1k}A_1 + cdots + b_{nk}A_n$. Using the linearity of the determinant we get: $underline{det(C_1,dots,C_n) = sum_{i_1,i_2,dots,i_n} b_{i_1,1}b_{i_2,2}cdots b_{i_n,n} det(A_{i_1},dots,A_{i_n}) }$, where all $i_j$ are independently range from $1$ to $n$.
If $i_k = i_{ell}$, matrix $(A_{i_1},dots,A_{i_n})$ will have two identical columns and therefore $det(A_{i_1},dots,A_{i_n}) = 0$. Only the terms with $sigma = (i_1,dots,i_n)$ a permutation of ${1,dots,n}$ appear in the sum. Using $det(A_{i_1},dots,A_{i_n}) = operatorname{sgn}(sigma)det(A)$, we get:
$underline{det(C_1,dots,C_n) = det(A_{1},dots,A_{n}) sum_{sigmain S} operatorname{sgn}(sigma)b_{sigma(1),1}b_{sigma(2),2}cdots b_{sigma(n),n} }$. With $S$ the set of all permutations of ${1,dots,n}$.
The given statement can be proven by setting $A = I_n$ in the above.
I'm having troubles understanding where the underlined parts come from, especially the first expression for $det(C)$. Hopefully, someone could help me.
linear-algebra
$endgroup$
For every matrix $A in M_n(K)$: $det(A) = sum_{sigma in S} operatorname{sgn}(sigma)a_{sigma(1),1} cdots a_{sigma(n),n}$.
Proof: Consider $B = (b_{ij}) in M_n(K)$. Then $ C := AB in M_n(K) $ with $C = (C_1,dots,C_n) $ and $C_k = b_{1k}A_1 + cdots + b_{nk}A_n$. Using the linearity of the determinant we get: $underline{det(C_1,dots,C_n) = sum_{i_1,i_2,dots,i_n} b_{i_1,1}b_{i_2,2}cdots b_{i_n,n} det(A_{i_1},dots,A_{i_n}) }$, where all $i_j$ are independently range from $1$ to $n$.
If $i_k = i_{ell}$, matrix $(A_{i_1},dots,A_{i_n})$ will have two identical columns and therefore $det(A_{i_1},dots,A_{i_n}) = 0$. Only the terms with $sigma = (i_1,dots,i_n)$ a permutation of ${1,dots,n}$ appear in the sum. Using $det(A_{i_1},dots,A_{i_n}) = operatorname{sgn}(sigma)det(A)$, we get:
$underline{det(C_1,dots,C_n) = det(A_{1},dots,A_{n}) sum_{sigmain S} operatorname{sgn}(sigma)b_{sigma(1),1}b_{sigma(2),2}cdots b_{sigma(n),n} }$. With $S$ the set of all permutations of ${1,dots,n}$.
The given statement can be proven by setting $A = I_n$ in the above.
I'm having troubles understanding where the underlined parts come from, especially the first expression for $det(C)$. Hopefully, someone could help me.
linear-algebra
linear-algebra
edited Jan 12 at 8:01
Zachary
asked Jan 12 at 6:58
ZacharyZachary
1559
1559
1
$begingroup$
First expression is just multilinearity of the determinant.
$endgroup$
– Dietrich Burde
Jan 12 at 9:18
add a comment |
1
$begingroup$
First expression is just multilinearity of the determinant.
$endgroup$
– Dietrich Burde
Jan 12 at 9:18
1
1
$begingroup$
First expression is just multilinearity of the determinant.
$endgroup$
– Dietrich Burde
Jan 12 at 9:18
$begingroup$
First expression is just multilinearity of the determinant.
$endgroup$
– Dietrich Burde
Jan 12 at 9:18
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070660%2fdeterminant-question-on-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070660%2fdeterminant-question-on-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
First expression is just multilinearity of the determinant.
$endgroup$
– Dietrich Burde
Jan 12 at 9:18