Determinant: question on proof












0












$begingroup$



For every matrix $A in M_n(K)$: $det(A) = sum_{sigma in S} operatorname{sgn}(sigma)a_{sigma(1),1} cdots a_{sigma(n),n}$.




Proof: Consider $B = (b_{ij}) in M_n(K)$. Then $ C := AB in M_n(K) $ with $C = (C_1,dots,C_n) $ and $C_k = b_{1k}A_1 + cdots + b_{nk}A_n$. Using the linearity of the determinant we get: $underline{det(C_1,dots,C_n) = sum_{i_1,i_2,dots,i_n} b_{i_1,1}b_{i_2,2}cdots b_{i_n,n} det(A_{i_1},dots,A_{i_n}) }$, where all $i_j$ are independently range from $1$ to $n$.



If $i_k = i_{ell}$, matrix $(A_{i_1},dots,A_{i_n})$ will have two identical columns and therefore $det(A_{i_1},dots,A_{i_n}) = 0$. Only the terms with $sigma = (i_1,dots,i_n)$ a permutation of ${1,dots,n}$ appear in the sum. Using $det(A_{i_1},dots,A_{i_n}) = operatorname{sgn}(sigma)det(A)$, we get:



$underline{det(C_1,dots,C_n) = det(A_{1},dots,A_{n}) sum_{sigmain S} operatorname{sgn}(sigma)b_{sigma(1),1}b_{sigma(2),2}cdots b_{sigma(n),n} }$. With $S$ the set of all permutations of ${1,dots,n}$.



The given statement can be proven by setting $A = I_n$ in the above.



I'm having troubles understanding where the underlined parts come from, especially the first expression for $det(C)$. Hopefully, someone could help me.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    First expression is just multilinearity of the determinant.
    $endgroup$
    – Dietrich Burde
    Jan 12 at 9:18
















0












$begingroup$



For every matrix $A in M_n(K)$: $det(A) = sum_{sigma in S} operatorname{sgn}(sigma)a_{sigma(1),1} cdots a_{sigma(n),n}$.




Proof: Consider $B = (b_{ij}) in M_n(K)$. Then $ C := AB in M_n(K) $ with $C = (C_1,dots,C_n) $ and $C_k = b_{1k}A_1 + cdots + b_{nk}A_n$. Using the linearity of the determinant we get: $underline{det(C_1,dots,C_n) = sum_{i_1,i_2,dots,i_n} b_{i_1,1}b_{i_2,2}cdots b_{i_n,n} det(A_{i_1},dots,A_{i_n}) }$, where all $i_j$ are independently range from $1$ to $n$.



If $i_k = i_{ell}$, matrix $(A_{i_1},dots,A_{i_n})$ will have two identical columns and therefore $det(A_{i_1},dots,A_{i_n}) = 0$. Only the terms with $sigma = (i_1,dots,i_n)$ a permutation of ${1,dots,n}$ appear in the sum. Using $det(A_{i_1},dots,A_{i_n}) = operatorname{sgn}(sigma)det(A)$, we get:



$underline{det(C_1,dots,C_n) = det(A_{1},dots,A_{n}) sum_{sigmain S} operatorname{sgn}(sigma)b_{sigma(1),1}b_{sigma(2),2}cdots b_{sigma(n),n} }$. With $S$ the set of all permutations of ${1,dots,n}$.



The given statement can be proven by setting $A = I_n$ in the above.



I'm having troubles understanding where the underlined parts come from, especially the first expression for $det(C)$. Hopefully, someone could help me.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    First expression is just multilinearity of the determinant.
    $endgroup$
    – Dietrich Burde
    Jan 12 at 9:18














0












0








0





$begingroup$



For every matrix $A in M_n(K)$: $det(A) = sum_{sigma in S} operatorname{sgn}(sigma)a_{sigma(1),1} cdots a_{sigma(n),n}$.




Proof: Consider $B = (b_{ij}) in M_n(K)$. Then $ C := AB in M_n(K) $ with $C = (C_1,dots,C_n) $ and $C_k = b_{1k}A_1 + cdots + b_{nk}A_n$. Using the linearity of the determinant we get: $underline{det(C_1,dots,C_n) = sum_{i_1,i_2,dots,i_n} b_{i_1,1}b_{i_2,2}cdots b_{i_n,n} det(A_{i_1},dots,A_{i_n}) }$, where all $i_j$ are independently range from $1$ to $n$.



If $i_k = i_{ell}$, matrix $(A_{i_1},dots,A_{i_n})$ will have two identical columns and therefore $det(A_{i_1},dots,A_{i_n}) = 0$. Only the terms with $sigma = (i_1,dots,i_n)$ a permutation of ${1,dots,n}$ appear in the sum. Using $det(A_{i_1},dots,A_{i_n}) = operatorname{sgn}(sigma)det(A)$, we get:



$underline{det(C_1,dots,C_n) = det(A_{1},dots,A_{n}) sum_{sigmain S} operatorname{sgn}(sigma)b_{sigma(1),1}b_{sigma(2),2}cdots b_{sigma(n),n} }$. With $S$ the set of all permutations of ${1,dots,n}$.



The given statement can be proven by setting $A = I_n$ in the above.



I'm having troubles understanding where the underlined parts come from, especially the first expression for $det(C)$. Hopefully, someone could help me.










share|cite|improve this question











$endgroup$





For every matrix $A in M_n(K)$: $det(A) = sum_{sigma in S} operatorname{sgn}(sigma)a_{sigma(1),1} cdots a_{sigma(n),n}$.




Proof: Consider $B = (b_{ij}) in M_n(K)$. Then $ C := AB in M_n(K) $ with $C = (C_1,dots,C_n) $ and $C_k = b_{1k}A_1 + cdots + b_{nk}A_n$. Using the linearity of the determinant we get: $underline{det(C_1,dots,C_n) = sum_{i_1,i_2,dots,i_n} b_{i_1,1}b_{i_2,2}cdots b_{i_n,n} det(A_{i_1},dots,A_{i_n}) }$, where all $i_j$ are independently range from $1$ to $n$.



If $i_k = i_{ell}$, matrix $(A_{i_1},dots,A_{i_n})$ will have two identical columns and therefore $det(A_{i_1},dots,A_{i_n}) = 0$. Only the terms with $sigma = (i_1,dots,i_n)$ a permutation of ${1,dots,n}$ appear in the sum. Using $det(A_{i_1},dots,A_{i_n}) = operatorname{sgn}(sigma)det(A)$, we get:



$underline{det(C_1,dots,C_n) = det(A_{1},dots,A_{n}) sum_{sigmain S} operatorname{sgn}(sigma)b_{sigma(1),1}b_{sigma(2),2}cdots b_{sigma(n),n} }$. With $S$ the set of all permutations of ${1,dots,n}$.



The given statement can be proven by setting $A = I_n$ in the above.



I'm having troubles understanding where the underlined parts come from, especially the first expression for $det(C)$. Hopefully, someone could help me.







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 8:01







Zachary

















asked Jan 12 at 6:58









ZacharyZachary

1559




1559








  • 1




    $begingroup$
    First expression is just multilinearity of the determinant.
    $endgroup$
    – Dietrich Burde
    Jan 12 at 9:18














  • 1




    $begingroup$
    First expression is just multilinearity of the determinant.
    $endgroup$
    – Dietrich Burde
    Jan 12 at 9:18








1




1




$begingroup$
First expression is just multilinearity of the determinant.
$endgroup$
– Dietrich Burde
Jan 12 at 9:18




$begingroup$
First expression is just multilinearity of the determinant.
$endgroup$
– Dietrich Burde
Jan 12 at 9:18










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070660%2fdeterminant-question-on-proof%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070660%2fdeterminant-question-on-proof%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$