Derive the volume of a torus using the divergence theorem and Fubini's theorem.
$begingroup$
Given is the vector field $f=(x,y,0)$ and the set $Omega :=((sqrt{x^2+y^2}-2)^2+z^2 <1)$ (which is obviously a torus)
I'm asked to :
a) Calculate the outward unit normal field $v: delta Omega to mathbb{R}^3$
b) Calculate $int_{deltaOmega}langle f,vrangle dS$ using the Divergence Theorem. Hint : It is expected that you again derive the volume of a torus. For that, calculate first the area enclosed of the set $A_z:=((sqrt{x^2+y^2}-2)^2leq1-z^2) $for$ -1leq z leq 1$ and then use Fubini's theorem.
a) So here I think that the outward unit field vector is just the gradient of $f$ normalized. So the gradient is $(1,1,0)$ and when normalized, it is $(frac{1}{sqrt{2}},frac{1}{sqrt{2}},0)$.
b) Now, here I'm not really sure. For the area enclosed, I'm obviously supposed to use polar coordinates. So $(r-2)^2leq1-z^2$. So $pm(r-2)=pmsqrt{(1-z^2)}$.
So $r=2+sqrt{1-z^2}$ or $r=2-sqrt{1-z^2}$.
Now, the area is $int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta=int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$.
And so the volume will be $int_{-1}^{1}int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$
And our divergence is $2$, so we will just multiply the result by $2$.
Now, my questions are:
Is my procedure for a) correct ?
Is my procedure for b) correct and if yes, am I now just supposed to evaluate that integral ?
Thanks for you help !
real-analysis calculus integration multivariable-calculus vector-analysis
$endgroup$
add a comment |
$begingroup$
Given is the vector field $f=(x,y,0)$ and the set $Omega :=((sqrt{x^2+y^2}-2)^2+z^2 <1)$ (which is obviously a torus)
I'm asked to :
a) Calculate the outward unit normal field $v: delta Omega to mathbb{R}^3$
b) Calculate $int_{deltaOmega}langle f,vrangle dS$ using the Divergence Theorem. Hint : It is expected that you again derive the volume of a torus. For that, calculate first the area enclosed of the set $A_z:=((sqrt{x^2+y^2}-2)^2leq1-z^2) $for$ -1leq z leq 1$ and then use Fubini's theorem.
a) So here I think that the outward unit field vector is just the gradient of $f$ normalized. So the gradient is $(1,1,0)$ and when normalized, it is $(frac{1}{sqrt{2}},frac{1}{sqrt{2}},0)$.
b) Now, here I'm not really sure. For the area enclosed, I'm obviously supposed to use polar coordinates. So $(r-2)^2leq1-z^2$. So $pm(r-2)=pmsqrt{(1-z^2)}$.
So $r=2+sqrt{1-z^2}$ or $r=2-sqrt{1-z^2}$.
Now, the area is $int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta=int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$.
And so the volume will be $int_{-1}^{1}int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$
And our divergence is $2$, so we will just multiply the result by $2$.
Now, my questions are:
Is my procedure for a) correct ?
Is my procedure for b) correct and if yes, am I now just supposed to evaluate that integral ?
Thanks for you help !
real-analysis calculus integration multivariable-calculus vector-analysis
$endgroup$
add a comment |
$begingroup$
Given is the vector field $f=(x,y,0)$ and the set $Omega :=((sqrt{x^2+y^2}-2)^2+z^2 <1)$ (which is obviously a torus)
I'm asked to :
a) Calculate the outward unit normal field $v: delta Omega to mathbb{R}^3$
b) Calculate $int_{deltaOmega}langle f,vrangle dS$ using the Divergence Theorem. Hint : It is expected that you again derive the volume of a torus. For that, calculate first the area enclosed of the set $A_z:=((sqrt{x^2+y^2}-2)^2leq1-z^2) $for$ -1leq z leq 1$ and then use Fubini's theorem.
a) So here I think that the outward unit field vector is just the gradient of $f$ normalized. So the gradient is $(1,1,0)$ and when normalized, it is $(frac{1}{sqrt{2}},frac{1}{sqrt{2}},0)$.
b) Now, here I'm not really sure. For the area enclosed, I'm obviously supposed to use polar coordinates. So $(r-2)^2leq1-z^2$. So $pm(r-2)=pmsqrt{(1-z^2)}$.
So $r=2+sqrt{1-z^2}$ or $r=2-sqrt{1-z^2}$.
Now, the area is $int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta=int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$.
And so the volume will be $int_{-1}^{1}int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$
And our divergence is $2$, so we will just multiply the result by $2$.
Now, my questions are:
Is my procedure for a) correct ?
Is my procedure for b) correct and if yes, am I now just supposed to evaluate that integral ?
Thanks for you help !
real-analysis calculus integration multivariable-calculus vector-analysis
$endgroup$
Given is the vector field $f=(x,y,0)$ and the set $Omega :=((sqrt{x^2+y^2}-2)^2+z^2 <1)$ (which is obviously a torus)
I'm asked to :
a) Calculate the outward unit normal field $v: delta Omega to mathbb{R}^3$
b) Calculate $int_{deltaOmega}langle f,vrangle dS$ using the Divergence Theorem. Hint : It is expected that you again derive the volume of a torus. For that, calculate first the area enclosed of the set $A_z:=((sqrt{x^2+y^2}-2)^2leq1-z^2) $for$ -1leq z leq 1$ and then use Fubini's theorem.
a) So here I think that the outward unit field vector is just the gradient of $f$ normalized. So the gradient is $(1,1,0)$ and when normalized, it is $(frac{1}{sqrt{2}},frac{1}{sqrt{2}},0)$.
b) Now, here I'm not really sure. For the area enclosed, I'm obviously supposed to use polar coordinates. So $(r-2)^2leq1-z^2$. So $pm(r-2)=pmsqrt{(1-z^2)}$.
So $r=2+sqrt{1-z^2}$ or $r=2-sqrt{1-z^2}$.
Now, the area is $int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta=int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$.
And so the volume will be $int_{-1}^{1}int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$
And our divergence is $2$, so we will just multiply the result by $2$.
Now, my questions are:
Is my procedure for a) correct ?
Is my procedure for b) correct and if yes, am I now just supposed to evaluate that integral ?
Thanks for you help !
real-analysis calculus integration multivariable-calculus vector-analysis
real-analysis calculus integration multivariable-calculus vector-analysis
asked Jan 12 at 9:18
PoujhPoujh
609516
609516
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
$$
Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
$$ Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
$$
nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
$$and by normalizing $$
v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
$$ We can check that $v$ is outward.
Similarly for $deltaOmega_2$,
$$
nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
$$ and
$$
v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
$$ (The sign is reversed.)
For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
$$
(x,y,z)=(rcostheta, rsintheta, z).
$$ Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
$$begin{eqnarray}
2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
&=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
&=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
&=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$
b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070728%2fderive-the-volume-of-a-torus-using-the-divergence-theorem-and-fubinis-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
$$
Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
$$ Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
$$
nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
$$and by normalizing $$
v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
$$ We can check that $v$ is outward.
Similarly for $deltaOmega_2$,
$$
nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
$$ and
$$
v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
$$ (The sign is reversed.)
For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
$$
(x,y,z)=(rcostheta, rsintheta, z).
$$ Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
$$begin{eqnarray}
2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
&=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
&=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
&=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
$$
Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
$$ Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
$$
nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
$$and by normalizing $$
v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
$$ We can check that $v$ is outward.
Similarly for $deltaOmega_2$,
$$
nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
$$ and
$$
v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
$$ (The sign is reversed.)
For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
$$
(x,y,z)=(rcostheta, rsintheta, z).
$$ Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
$$begin{eqnarray}
2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
&=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
&=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
&=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
$$
Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
$$ Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
$$
nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
$$and by normalizing $$
v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
$$ We can check that $v$ is outward.
Similarly for $deltaOmega_2$,
$$
nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
$$ and
$$
v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
$$ (The sign is reversed.)
For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
$$
(x,y,z)=(rcostheta, rsintheta, z).
$$ Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
$$begin{eqnarray}
2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
&=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
&=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
&=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
end{eqnarray}$$
$endgroup$
For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
$$
Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
$$ Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
$$
nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
$$and by normalizing $$
v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
$$ We can check that $v$ is outward.
Similarly for $deltaOmega_2$,
$$
nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
$$ and
$$
v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
$$ (The sign is reversed.)
For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
$$
(x,y,z)=(rcostheta, rsintheta, z).
$$ Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
$$begin{eqnarray}
2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
&=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
&=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
&=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
end{eqnarray}$$
edited Jan 12 at 10:06
answered Jan 12 at 9:59
SongSong
12.3k630
12.3k630
add a comment |
add a comment |
$begingroup$
For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$
b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$
$endgroup$
add a comment |
$begingroup$
For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$
b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$
$endgroup$
add a comment |
$begingroup$
For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$
b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$
$endgroup$
For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$
b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$
answered Jan 12 at 9:54
Mostafa AyazMostafa Ayaz
15.6k3939
15.6k3939
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070728%2fderive-the-volume-of-a-torus-using-the-divergence-theorem-and-fubinis-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown