Derive the volume of a torus using the divergence theorem and Fubini's theorem.












3












$begingroup$


Given is the vector field $f=(x,y,0)$ and the set $Omega :=((sqrt{x^2+y^2}-2)^2+z^2 <1)$ (which is obviously a torus)



I'm asked to :


a) Calculate the outward unit normal field $v: delta Omega to mathbb{R}^3$


b) Calculate $int_{deltaOmega}langle f,vrangle dS$ using the Divergence Theorem. Hint : It is expected that you again derive the volume of a torus. For that, calculate first the area enclosed of the set $A_z:=((sqrt{x^2+y^2}-2)^2leq1-z^2) $for$ -1leq z leq 1$ and then use Fubini's theorem.






a) So here I think that the outward unit field vector is just the gradient of $f$ normalized. So the gradient is $(1,1,0)$ and when normalized, it is $(frac{1}{sqrt{2}},frac{1}{sqrt{2}},0)$.


b) Now, here I'm not really sure. For the area enclosed, I'm obviously supposed to use polar coordinates. So $(r-2)^2leq1-z^2$. So $pm(r-2)=pmsqrt{(1-z^2)}$.
So $r=2+sqrt{1-z^2}$ or $r=2-sqrt{1-z^2}$.
Now, the area is $int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta=int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$.
And so the volume will be $int_{-1}^{1}int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$

And our divergence is $2$, so we will just multiply the result by $2$.



Now, my questions are:

Is my procedure for a) correct ?

Is my procedure for b) correct and if yes, am I now just supposed to evaluate that integral ?



Thanks for you help !










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Given is the vector field $f=(x,y,0)$ and the set $Omega :=((sqrt{x^2+y^2}-2)^2+z^2 <1)$ (which is obviously a torus)



    I'm asked to :


    a) Calculate the outward unit normal field $v: delta Omega to mathbb{R}^3$


    b) Calculate $int_{deltaOmega}langle f,vrangle dS$ using the Divergence Theorem. Hint : It is expected that you again derive the volume of a torus. For that, calculate first the area enclosed of the set $A_z:=((sqrt{x^2+y^2}-2)^2leq1-z^2) $for$ -1leq z leq 1$ and then use Fubini's theorem.






    a) So here I think that the outward unit field vector is just the gradient of $f$ normalized. So the gradient is $(1,1,0)$ and when normalized, it is $(frac{1}{sqrt{2}},frac{1}{sqrt{2}},0)$.


    b) Now, here I'm not really sure. For the area enclosed, I'm obviously supposed to use polar coordinates. So $(r-2)^2leq1-z^2$. So $pm(r-2)=pmsqrt{(1-z^2)}$.
    So $r=2+sqrt{1-z^2}$ or $r=2-sqrt{1-z^2}$.
    Now, the area is $int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta=int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$.
    And so the volume will be $int_{-1}^{1}int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$

    And our divergence is $2$, so we will just multiply the result by $2$.



    Now, my questions are:

    Is my procedure for a) correct ?

    Is my procedure for b) correct and if yes, am I now just supposed to evaluate that integral ?



    Thanks for you help !










    share|cite|improve this question









    $endgroup$















      3












      3








      3





      $begingroup$


      Given is the vector field $f=(x,y,0)$ and the set $Omega :=((sqrt{x^2+y^2}-2)^2+z^2 <1)$ (which is obviously a torus)



      I'm asked to :


      a) Calculate the outward unit normal field $v: delta Omega to mathbb{R}^3$


      b) Calculate $int_{deltaOmega}langle f,vrangle dS$ using the Divergence Theorem. Hint : It is expected that you again derive the volume of a torus. For that, calculate first the area enclosed of the set $A_z:=((sqrt{x^2+y^2}-2)^2leq1-z^2) $for$ -1leq z leq 1$ and then use Fubini's theorem.






      a) So here I think that the outward unit field vector is just the gradient of $f$ normalized. So the gradient is $(1,1,0)$ and when normalized, it is $(frac{1}{sqrt{2}},frac{1}{sqrt{2}},0)$.


      b) Now, here I'm not really sure. For the area enclosed, I'm obviously supposed to use polar coordinates. So $(r-2)^2leq1-z^2$. So $pm(r-2)=pmsqrt{(1-z^2)}$.
      So $r=2+sqrt{1-z^2}$ or $r=2-sqrt{1-z^2}$.
      Now, the area is $int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta=int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$.
      And so the volume will be $int_{-1}^{1}int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$

      And our divergence is $2$, so we will just multiply the result by $2$.



      Now, my questions are:

      Is my procedure for a) correct ?

      Is my procedure for b) correct and if yes, am I now just supposed to evaluate that integral ?



      Thanks for you help !










      share|cite|improve this question









      $endgroup$




      Given is the vector field $f=(x,y,0)$ and the set $Omega :=((sqrt{x^2+y^2}-2)^2+z^2 <1)$ (which is obviously a torus)



      I'm asked to :


      a) Calculate the outward unit normal field $v: delta Omega to mathbb{R}^3$


      b) Calculate $int_{deltaOmega}langle f,vrangle dS$ using the Divergence Theorem. Hint : It is expected that you again derive the volume of a torus. For that, calculate first the area enclosed of the set $A_z:=((sqrt{x^2+y^2}-2)^2leq1-z^2) $for$ -1leq z leq 1$ and then use Fubini's theorem.






      a) So here I think that the outward unit field vector is just the gradient of $f$ normalized. So the gradient is $(1,1,0)$ and when normalized, it is $(frac{1}{sqrt{2}},frac{1}{sqrt{2}},0)$.


      b) Now, here I'm not really sure. For the area enclosed, I'm obviously supposed to use polar coordinates. So $(r-2)^2leq1-z^2$. So $pm(r-2)=pmsqrt{(1-z^2)}$.
      So $r=2+sqrt{1-z^2}$ or $r=2-sqrt{1-z^2}$.
      Now, the area is $int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta=int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$.
      And so the volume will be $int_{-1}^{1}int_{-sqrt{1-z^2}}^{sqrt{1-z^2}}int_{0}^{2pi}1rdrdtheta$

      And our divergence is $2$, so we will just multiply the result by $2$.



      Now, my questions are:

      Is my procedure for a) correct ?

      Is my procedure for b) correct and if yes, am I now just supposed to evaluate that integral ?



      Thanks for you help !







      real-analysis calculus integration multivariable-calculus vector-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 12 at 9:18









      PoujhPoujh

      609516




      609516






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
          $$
          Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
          $$
          Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
          $$
          nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
          $$
          and by normalizing $$
          v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
          $$
          We can check that $v$ is outward.
          Similarly for $deltaOmega_2$,
          $$
          nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
          $$
          and
          $$
          v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
          $$
          (The sign is reversed.)



          For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
          $$
          (x,y,z)=(rcostheta, rsintheta, z).
          $$
          Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
          $$begin{eqnarray}
          2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
          &=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
          &=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
          &=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
          end{eqnarray}$$






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$



            b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070728%2fderive-the-volume-of-a-torus-using-the-divergence-theorem-and-fubinis-theorem%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
              $$
              Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
              $$
              Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
              $$
              nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
              $$
              and by normalizing $$
              v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
              $$
              We can check that $v$ is outward.
              Similarly for $deltaOmega_2$,
              $$
              nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
              $$
              and
              $$
              v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
              $$
              (The sign is reversed.)



              For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
              $$
              (x,y,z)=(rcostheta, rsintheta, z).
              $$
              Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
              $$begin{eqnarray}
              2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
              &=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
              &=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
              &=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
              end{eqnarray}$$






              share|cite|improve this answer











              $endgroup$


















                2












                $begingroup$

                For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
                $$
                Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
                $$
                Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
                $$
                nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
                $$
                and by normalizing $$
                v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
                $$
                We can check that $v$ is outward.
                Similarly for $deltaOmega_2$,
                $$
                nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
                $$
                and
                $$
                v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
                $$
                (The sign is reversed.)



                For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
                $$
                (x,y,z)=(rcostheta, rsintheta, z).
                $$
                Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
                $$begin{eqnarray}
                2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
                &=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
                &=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
                &=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
                end{eqnarray}$$






                share|cite|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
                  $$
                  Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
                  $$
                  Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
                  $$
                  nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
                  $$
                  and by normalizing $$
                  v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
                  $$
                  We can check that $v$ is outward.
                  Similarly for $deltaOmega_2$,
                  $$
                  nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
                  $$
                  and
                  $$
                  v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
                  $$
                  (The sign is reversed.)



                  For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
                  $$
                  (x,y,z)=(rcostheta, rsintheta, z).
                  $$
                  Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
                  $$begin{eqnarray}
                  2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
                  &=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
                  &=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
                  &=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
                  end{eqnarray}$$






                  share|cite|improve this answer











                  $endgroup$



                  For $a)$, we can calculate $v:deltaOmega to mathbb{R}^3$ using parametrization of $delta Omega$. Note that $v$ depends only on $Omega$, and is completely irrelevant to the given vector field $f$. (So your calculation is not valid.) Let $sqrt{x^2+y^2} = r$. Then we can write
                  $$
                  Omega : 2-sqrt{1-z^2}<r<2+sqrt{1-z^2}.
                  $$
                  Hence $Omega = Omega_1 -Omega_2$ where $Omega_1:r<2+sqrt{1-z^2}$ and $Omega_2: r<2-sqrt{1-z^2}$. We can calculate $v$ on $deltaOmega_1$ as follows:
                  $$
                  nabla_{x,y,z}(r-2-sqrt{1-z^2})=(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})',
                  $$
                  and by normalizing $$
                  v(x,y,z) = sqrt{1-z^2}(frac{x}{r},frac{y}{r},frac{z}{sqrt{1-z^2}})'.
                  $$
                  We can check that $v$ is outward.
                  Similarly for $deltaOmega_2$,
                  $$
                  nabla_{x,y,z}(r-2+sqrt{1-z^2})=(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'
                  $$
                  and
                  $$
                  v(x,y,z) = -sqrt{1-z^2}(frac{x}{r},frac{y}{r},-frac{z}{sqrt{1-z^2}})'.
                  $$
                  (The sign is reversed.)



                  For $b)$, it is true that $int_{deltaOmega}langle f,vrangle dS=int_Omega nablacdot f;dxdydz=2text{vol}(Omega).$ We can calculate this using cylindrical coordinate
                  $$
                  (x,y,z)=(rcostheta, rsintheta, z).
                  $$
                  Then, $dxdydz = rdrdtheta dz$ and the given integral becomes
                  $$begin{eqnarray}
                  2int_Omega dxdydz &=&2int_{-1}^1 int_0^{2pi}int_{2-sqrt{1-z^2}}^{2+sqrt{1-z^2}}rdrdtheta dz\
                  &=&2piint_{-1}^1 r^2big|^{2+sqrt{1-z^2}}_{2-sqrt{1-z^2}} ;dz\
                  &=&16pi int_{-1}^1 sqrt{1-z^2} ;dz\
                  &=&16pi int_{-frac{pi}{2}}^frac{pi}{2} cos^2 u ;du=8pi^2.
                  end{eqnarray}$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 12 at 10:06

























                  answered Jan 12 at 9:59









                  SongSong

                  12.3k630




                  12.3k630























                      2












                      $begingroup$

                      For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$



                      b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$



                        b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$



                          b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$






                          share|cite|improve this answer









                          $endgroup$



                          For a) it is best to turn to cylindrical coordinates. Note that for a relation $f(x,y,z)=0$ the gradient $nabla f(x,y,z)$ is always normal to it, therefore if the equation of torus is $$f(r,phi ,z)=(r-2)^2+z^2-1=0$$then we have$$vec v={nabla f(r,phi , z)over |nabla f(r,phi , z)|_2}={(r-2,0,z)over sqrt{(r-2)^2+z^2}}$$



                          b) $$int_{deltaOmega}langle f,vrangle dS{=int_V nablacdot f(x,y,z)dV\=int_V 2dV\=2int_{(r-2)^2+z^2<1}rdrdphi dz}$$note that $1<r<3$ and $-1<z<1$ therefore by the definition of torus we conclude that $$2-sqrt{1-z^2}<r<2+sqrt{1-z^2}$$and $$5-z^2-4sqrt{1-z^2}<r^2<5-z^2+4sqrt{1-z^2}$$so we can write$$2int_{(r-2)^2+z^2<1}rdrdphi dz{=int_{(r-2)^2+z^2<1}dr^2dphi dz\=2pi int_{(r-2)^2+z^2<1}dr^2 dz\=2pi int_{-1}^1int_{r^2=5-z^2-4sqrt{1-z^2}}^{r^2=5-z^2+4sqrt{1-z^2}}dr^2 dz\=16piint_{-1}^1sqrt{1-z^2}dz\=8pi ^2}$$therefore$$int_{deltaOmega}langle f,vrangle dS=8pi^2$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 12 at 9:54









                          Mostafa AyazMostafa Ayaz

                          15.6k3939




                          15.6k3939






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070728%2fderive-the-volume-of-a-torus-using-the-divergence-theorem-and-fubinis-theorem%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                              Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                              A Topological Invariant for $pi_3(U(n))$