If $ f(x) = x^3+frac{3x}{4}-frac{3x^2}{2}+frac{7}{8}.$ Then $ int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx$...












2












$begingroup$



This question already has an answer here:




  • Let $f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ Then the value of $ int^{3/4}_{1/4}f(f(x))mathrm dx$

    3 answers





If $displaystyle f(x) = x^3+frac{3x}{4}-frac{3x^2}{2}+frac{7}{8}.$ Then $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx$




Try: Given $displaystyle f(x) =x^3+frac{3x}{4}-frac{3x^2}{2}+frac{7}{8}. $



Then $displaystyle f(1-x) = (1-x)^3+frac{3}{4}(1-x)-frac{3}{2}(1-x)^2+frac{7}{8}$



$$f(1-x) = -x^3+frac{3x^2}{2}-frac{3x}{4}+frac{9}{8}$$



$$f(x)+f(1-x) = 2$$



Let $$I = int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx = int^{frac{3}{4}}_{frac{1}{4}}f(f(1-x))dx$$



I did not understand how to solve from there



could some help me to solve it










share|cite|improve this question









$endgroup$



marked as duplicate by Anurag A, Claude Leibovici, user91500, egreg, Martin Sleziak Jan 12 at 14:49


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    I mean, is there much to be said about this? Just compute $f(f(x))$ and then compute the integral.
    $endgroup$
    – MathematicsStudent1122
    Jan 12 at 7:43








  • 3




    $begingroup$
    Notice $$f(x) = left(x-frac12right)^3 + 1implies f(f(x)) = left(left(x-frac12right)^3 + frac12right)^3 + 1$$ Change variable to $u = x - frac12$, the integral becomes $$int_{-frac14}^frac14 left[left(u^3 + frac12right)^3 + 1right] du stackrel{color{red}{text{WHY?}}}{=} 2int_0^frac14 left[frac32 u^6 + frac98right] du = cdots $$
    $endgroup$
    – achille hui
    Jan 12 at 7:53
















2












$begingroup$



This question already has an answer here:




  • Let $f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ Then the value of $ int^{3/4}_{1/4}f(f(x))mathrm dx$

    3 answers





If $displaystyle f(x) = x^3+frac{3x}{4}-frac{3x^2}{2}+frac{7}{8}.$ Then $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx$




Try: Given $displaystyle f(x) =x^3+frac{3x}{4}-frac{3x^2}{2}+frac{7}{8}. $



Then $displaystyle f(1-x) = (1-x)^3+frac{3}{4}(1-x)-frac{3}{2}(1-x)^2+frac{7}{8}$



$$f(1-x) = -x^3+frac{3x^2}{2}-frac{3x}{4}+frac{9}{8}$$



$$f(x)+f(1-x) = 2$$



Let $$I = int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx = int^{frac{3}{4}}_{frac{1}{4}}f(f(1-x))dx$$



I did not understand how to solve from there



could some help me to solve it










share|cite|improve this question









$endgroup$



marked as duplicate by Anurag A, Claude Leibovici, user91500, egreg, Martin Sleziak Jan 12 at 14:49


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    I mean, is there much to be said about this? Just compute $f(f(x))$ and then compute the integral.
    $endgroup$
    – MathematicsStudent1122
    Jan 12 at 7:43








  • 3




    $begingroup$
    Notice $$f(x) = left(x-frac12right)^3 + 1implies f(f(x)) = left(left(x-frac12right)^3 + frac12right)^3 + 1$$ Change variable to $u = x - frac12$, the integral becomes $$int_{-frac14}^frac14 left[left(u^3 + frac12right)^3 + 1right] du stackrel{color{red}{text{WHY?}}}{=} 2int_0^frac14 left[frac32 u^6 + frac98right] du = cdots $$
    $endgroup$
    – achille hui
    Jan 12 at 7:53














2












2








2


1



$begingroup$



This question already has an answer here:




  • Let $f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ Then the value of $ int^{3/4}_{1/4}f(f(x))mathrm dx$

    3 answers





If $displaystyle f(x) = x^3+frac{3x}{4}-frac{3x^2}{2}+frac{7}{8}.$ Then $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx$




Try: Given $displaystyle f(x) =x^3+frac{3x}{4}-frac{3x^2}{2}+frac{7}{8}. $



Then $displaystyle f(1-x) = (1-x)^3+frac{3}{4}(1-x)-frac{3}{2}(1-x)^2+frac{7}{8}$



$$f(1-x) = -x^3+frac{3x^2}{2}-frac{3x}{4}+frac{9}{8}$$



$$f(x)+f(1-x) = 2$$



Let $$I = int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx = int^{frac{3}{4}}_{frac{1}{4}}f(f(1-x))dx$$



I did not understand how to solve from there



could some help me to solve it










share|cite|improve this question









$endgroup$





This question already has an answer here:




  • Let $f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ Then the value of $ int^{3/4}_{1/4}f(f(x))mathrm dx$

    3 answers





If $displaystyle f(x) = x^3+frac{3x}{4}-frac{3x^2}{2}+frac{7}{8}.$ Then $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx$




Try: Given $displaystyle f(x) =x^3+frac{3x}{4}-frac{3x^2}{2}+frac{7}{8}. $



Then $displaystyle f(1-x) = (1-x)^3+frac{3}{4}(1-x)-frac{3}{2}(1-x)^2+frac{7}{8}$



$$f(1-x) = -x^3+frac{3x^2}{2}-frac{3x}{4}+frac{9}{8}$$



$$f(x)+f(1-x) = 2$$



Let $$I = int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx = int^{frac{3}{4}}_{frac{1}{4}}f(f(1-x))dx$$



I did not understand how to solve from there



could some help me to solve it





This question already has an answer here:




  • Let $f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ Then the value of $ int^{3/4}_{1/4}f(f(x))mathrm dx$

    3 answers








definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 12 at 7:28









DXTDXT

5,6892630




5,6892630




marked as duplicate by Anurag A, Claude Leibovici, user91500, egreg, Martin Sleziak Jan 12 at 14:49


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Anurag A, Claude Leibovici, user91500, egreg, Martin Sleziak Jan 12 at 14:49


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    I mean, is there much to be said about this? Just compute $f(f(x))$ and then compute the integral.
    $endgroup$
    – MathematicsStudent1122
    Jan 12 at 7:43








  • 3




    $begingroup$
    Notice $$f(x) = left(x-frac12right)^3 + 1implies f(f(x)) = left(left(x-frac12right)^3 + frac12right)^3 + 1$$ Change variable to $u = x - frac12$, the integral becomes $$int_{-frac14}^frac14 left[left(u^3 + frac12right)^3 + 1right] du stackrel{color{red}{text{WHY?}}}{=} 2int_0^frac14 left[frac32 u^6 + frac98right] du = cdots $$
    $endgroup$
    – achille hui
    Jan 12 at 7:53


















  • $begingroup$
    I mean, is there much to be said about this? Just compute $f(f(x))$ and then compute the integral.
    $endgroup$
    – MathematicsStudent1122
    Jan 12 at 7:43








  • 3




    $begingroup$
    Notice $$f(x) = left(x-frac12right)^3 + 1implies f(f(x)) = left(left(x-frac12right)^3 + frac12right)^3 + 1$$ Change variable to $u = x - frac12$, the integral becomes $$int_{-frac14}^frac14 left[left(u^3 + frac12right)^3 + 1right] du stackrel{color{red}{text{WHY?}}}{=} 2int_0^frac14 left[frac32 u^6 + frac98right] du = cdots $$
    $endgroup$
    – achille hui
    Jan 12 at 7:53
















$begingroup$
I mean, is there much to be said about this? Just compute $f(f(x))$ and then compute the integral.
$endgroup$
– MathematicsStudent1122
Jan 12 at 7:43






$begingroup$
I mean, is there much to be said about this? Just compute $f(f(x))$ and then compute the integral.
$endgroup$
– MathematicsStudent1122
Jan 12 at 7:43






3




3




$begingroup$
Notice $$f(x) = left(x-frac12right)^3 + 1implies f(f(x)) = left(left(x-frac12right)^3 + frac12right)^3 + 1$$ Change variable to $u = x - frac12$, the integral becomes $$int_{-frac14}^frac14 left[left(u^3 + frac12right)^3 + 1right] du stackrel{color{red}{text{WHY?}}}{=} 2int_0^frac14 left[frac32 u^6 + frac98right] du = cdots $$
$endgroup$
– achille hui
Jan 12 at 7:53




$begingroup$
Notice $$f(x) = left(x-frac12right)^3 + 1implies f(f(x)) = left(left(x-frac12right)^3 + frac12right)^3 + 1$$ Change variable to $u = x - frac12$, the integral becomes $$int_{-frac14}^frac14 left[left(u^3 + frac12right)^3 + 1right] du stackrel{color{red}{text{WHY?}}}{=} 2int_0^frac14 left[frac32 u^6 + frac98right] du = cdots $$
$endgroup$
– achille hui
Jan 12 at 7:53










1 Answer
1






active

oldest

votes


















3












$begingroup$

Hint



Note that $$f(x)={(x-{1over 2})^3}+1$$and $$int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx=int^{frac{1}{4}}_{-frac{1}{4}}f(f(u+{1over 2}))du=int^{frac{1}{4}}_{-frac{1}{4}}f(u^3+1)du$$






share|cite|improve this answer









$endgroup$




















    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Hint



    Note that $$f(x)={(x-{1over 2})^3}+1$$and $$int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx=int^{frac{1}{4}}_{-frac{1}{4}}f(f(u+{1over 2}))du=int^{frac{1}{4}}_{-frac{1}{4}}f(u^3+1)du$$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Hint



      Note that $$f(x)={(x-{1over 2})^3}+1$$and $$int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx=int^{frac{1}{4}}_{-frac{1}{4}}f(f(u+{1over 2}))du=int^{frac{1}{4}}_{-frac{1}{4}}f(u^3+1)du$$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Hint



        Note that $$f(x)={(x-{1over 2})^3}+1$$and $$int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx=int^{frac{1}{4}}_{-frac{1}{4}}f(f(u+{1over 2}))du=int^{frac{1}{4}}_{-frac{1}{4}}f(u^3+1)du$$






        share|cite|improve this answer









        $endgroup$



        Hint



        Note that $$f(x)={(x-{1over 2})^3}+1$$and $$int^{frac{3}{4}}_{frac{1}{4}}f(f(x))dx=int^{frac{1}{4}}_{-frac{1}{4}}f(f(u+{1over 2}))du=int^{frac{1}{4}}_{-frac{1}{4}}f(u^3+1)du$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 12 at 9:05









        Mostafa AyazMostafa Ayaz

        15.6k3939




        15.6k3939















            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]