Series expansion of $logfrac{sin z}{z}$
$begingroup$
What is the series expansion of $f(z)= logfrac{sin z}{z}$ upto $z^6$ terms?
Since $f(z)$ is an even function,so the coefficients of all the odd powers of z must be $0$ and I calculated the coefficient of $z^2 $ to be $-1/4$ (am I correct) but what will be the expansion till $z^6$?
complex-analysis power-series
$endgroup$
add a comment |
$begingroup$
What is the series expansion of $f(z)= logfrac{sin z}{z}$ upto $z^6$ terms?
Since $f(z)$ is an even function,so the coefficients of all the odd powers of z must be $0$ and I calculated the coefficient of $z^2 $ to be $-1/4$ (am I correct) but what will be the expansion till $z^6$?
complex-analysis power-series
$endgroup$
add a comment |
$begingroup$
What is the series expansion of $f(z)= logfrac{sin z}{z}$ upto $z^6$ terms?
Since $f(z)$ is an even function,so the coefficients of all the odd powers of z must be $0$ and I calculated the coefficient of $z^2 $ to be $-1/4$ (am I correct) but what will be the expansion till $z^6$?
complex-analysis power-series
$endgroup$
What is the series expansion of $f(z)= logfrac{sin z}{z}$ upto $z^6$ terms?
Since $f(z)$ is an even function,so the coefficients of all the odd powers of z must be $0$ and I calculated the coefficient of $z^2 $ to be $-1/4$ (am I correct) but what will be the expansion till $z^6$?
complex-analysis power-series
complex-analysis power-series
edited Jan 12 at 9:42
Kemono Chen
3,0721743
3,0721743
asked Jan 12 at 9:03
Nilesh KhatriNilesh Khatri
195
195
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Using steps, start with
$$log left(frac{sin (x)}{x}right)=log left(1+left(frac{sin (x)}{x}-1right)right)$$ Let $t=frac{sin (x)}{x}-1$ and use
$$log(1+t)=t-frac{t^2}{2}+frac{t^3}{3}-frac{t^4}{4}+frac{t^5}{5}-frac{t^6}{6}+frac{t^7}{
7}+Oleft(t^8right)$$
Now
$$t=frac{sin (x)}{x}-1=-frac{x^2}{6}+frac{x^4}{120}-frac{x^6}{5040}+Oleft(x^8right)$$ I suppose that the binomila expansion will be simple since you are not asked for too many terms.
$endgroup$
add a comment |
$begingroup$
I will post another approach with Bernoulli numbers. This answer provides the general terms of the coefficients.
$$lnfrac{sin x}x=int_0^xleft(cot t-frac1tright)dt\
=int_0^xsum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!}t^{2n-1}dt\
=sum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!(2n)}x^{2n}\
=-frac16x^2-frac1{180}x^4-frac1{2835}x^6-cdots$$
$endgroup$
$begingroup$
Nice way to do it for sure ! $to +1$
$endgroup$
– Claude Leibovici
Jan 12 at 10:23
$begingroup$
This is a really good method.
$endgroup$
– Szeto
Jan 13 at 2:59
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070718%2fseries-expansion-of-log-frac-sin-zz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using steps, start with
$$log left(frac{sin (x)}{x}right)=log left(1+left(frac{sin (x)}{x}-1right)right)$$ Let $t=frac{sin (x)}{x}-1$ and use
$$log(1+t)=t-frac{t^2}{2}+frac{t^3}{3}-frac{t^4}{4}+frac{t^5}{5}-frac{t^6}{6}+frac{t^7}{
7}+Oleft(t^8right)$$
Now
$$t=frac{sin (x)}{x}-1=-frac{x^2}{6}+frac{x^4}{120}-frac{x^6}{5040}+Oleft(x^8right)$$ I suppose that the binomila expansion will be simple since you are not asked for too many terms.
$endgroup$
add a comment |
$begingroup$
Using steps, start with
$$log left(frac{sin (x)}{x}right)=log left(1+left(frac{sin (x)}{x}-1right)right)$$ Let $t=frac{sin (x)}{x}-1$ and use
$$log(1+t)=t-frac{t^2}{2}+frac{t^3}{3}-frac{t^4}{4}+frac{t^5}{5}-frac{t^6}{6}+frac{t^7}{
7}+Oleft(t^8right)$$
Now
$$t=frac{sin (x)}{x}-1=-frac{x^2}{6}+frac{x^4}{120}-frac{x^6}{5040}+Oleft(x^8right)$$ I suppose that the binomila expansion will be simple since you are not asked for too many terms.
$endgroup$
add a comment |
$begingroup$
Using steps, start with
$$log left(frac{sin (x)}{x}right)=log left(1+left(frac{sin (x)}{x}-1right)right)$$ Let $t=frac{sin (x)}{x}-1$ and use
$$log(1+t)=t-frac{t^2}{2}+frac{t^3}{3}-frac{t^4}{4}+frac{t^5}{5}-frac{t^6}{6}+frac{t^7}{
7}+Oleft(t^8right)$$
Now
$$t=frac{sin (x)}{x}-1=-frac{x^2}{6}+frac{x^4}{120}-frac{x^6}{5040}+Oleft(x^8right)$$ I suppose that the binomila expansion will be simple since you are not asked for too many terms.
$endgroup$
Using steps, start with
$$log left(frac{sin (x)}{x}right)=log left(1+left(frac{sin (x)}{x}-1right)right)$$ Let $t=frac{sin (x)}{x}-1$ and use
$$log(1+t)=t-frac{t^2}{2}+frac{t^3}{3}-frac{t^4}{4}+frac{t^5}{5}-frac{t^6}{6}+frac{t^7}{
7}+Oleft(t^8right)$$
Now
$$t=frac{sin (x)}{x}-1=-frac{x^2}{6}+frac{x^4}{120}-frac{x^6}{5040}+Oleft(x^8right)$$ I suppose that the binomila expansion will be simple since you are not asked for too many terms.
answered Jan 12 at 9:14
Claude LeiboviciClaude Leibovici
121k1157133
121k1157133
add a comment |
add a comment |
$begingroup$
I will post another approach with Bernoulli numbers. This answer provides the general terms of the coefficients.
$$lnfrac{sin x}x=int_0^xleft(cot t-frac1tright)dt\
=int_0^xsum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!}t^{2n-1}dt\
=sum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!(2n)}x^{2n}\
=-frac16x^2-frac1{180}x^4-frac1{2835}x^6-cdots$$
$endgroup$
$begingroup$
Nice way to do it for sure ! $to +1$
$endgroup$
– Claude Leibovici
Jan 12 at 10:23
$begingroup$
This is a really good method.
$endgroup$
– Szeto
Jan 13 at 2:59
add a comment |
$begingroup$
I will post another approach with Bernoulli numbers. This answer provides the general terms of the coefficients.
$$lnfrac{sin x}x=int_0^xleft(cot t-frac1tright)dt\
=int_0^xsum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!}t^{2n-1}dt\
=sum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!(2n)}x^{2n}\
=-frac16x^2-frac1{180}x^4-frac1{2835}x^6-cdots$$
$endgroup$
$begingroup$
Nice way to do it for sure ! $to +1$
$endgroup$
– Claude Leibovici
Jan 12 at 10:23
$begingroup$
This is a really good method.
$endgroup$
– Szeto
Jan 13 at 2:59
add a comment |
$begingroup$
I will post another approach with Bernoulli numbers. This answer provides the general terms of the coefficients.
$$lnfrac{sin x}x=int_0^xleft(cot t-frac1tright)dt\
=int_0^xsum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!}t^{2n-1}dt\
=sum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!(2n)}x^{2n}\
=-frac16x^2-frac1{180}x^4-frac1{2835}x^6-cdots$$
$endgroup$
I will post another approach with Bernoulli numbers. This answer provides the general terms of the coefficients.
$$lnfrac{sin x}x=int_0^xleft(cot t-frac1tright)dt\
=int_0^xsum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!}t^{2n-1}dt\
=sum_{nge 1}frac{(-4)^nB_{2n}}{(2n)!(2n)}x^{2n}\
=-frac16x^2-frac1{180}x^4-frac1{2835}x^6-cdots$$
answered Jan 12 at 9:48
Kemono ChenKemono Chen
3,0721743
3,0721743
$begingroup$
Nice way to do it for sure ! $to +1$
$endgroup$
– Claude Leibovici
Jan 12 at 10:23
$begingroup$
This is a really good method.
$endgroup$
– Szeto
Jan 13 at 2:59
add a comment |
$begingroup$
Nice way to do it for sure ! $to +1$
$endgroup$
– Claude Leibovici
Jan 12 at 10:23
$begingroup$
This is a really good method.
$endgroup$
– Szeto
Jan 13 at 2:59
$begingroup$
Nice way to do it for sure ! $to +1$
$endgroup$
– Claude Leibovici
Jan 12 at 10:23
$begingroup$
Nice way to do it for sure ! $to +1$
$endgroup$
– Claude Leibovici
Jan 12 at 10:23
$begingroup$
This is a really good method.
$endgroup$
– Szeto
Jan 13 at 2:59
$begingroup$
This is a really good method.
$endgroup$
– Szeto
Jan 13 at 2:59
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070718%2fseries-expansion-of-log-frac-sin-zz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown