Definition of $binom{frac{1}{2}}{1}$?












0












$begingroup$


How interpret the combination



$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    In what context does this come up?
    $endgroup$
    – Michael Burr
    Nov 16 '18 at 21:57










  • $begingroup$
    @MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
    $endgroup$
    – Cheerful Parsnip
    Nov 16 '18 at 22:01
















0












$begingroup$


How interpret the combination



$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    In what context does this come up?
    $endgroup$
    – Michael Burr
    Nov 16 '18 at 21:57










  • $begingroup$
    @MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
    $endgroup$
    – Cheerful Parsnip
    Nov 16 '18 at 22:01














0












0








0





$begingroup$


How interpret the combination



$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?










share|cite|improve this question











$endgroup$




How interpret the combination



$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?







combinatorics binomial-coefficients






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 22:53









Simply Beautiful Art

50.5k578182




50.5k578182










asked Nov 16 '18 at 21:54









MedoMedo

632214




632214












  • $begingroup$
    In what context does this come up?
    $endgroup$
    – Michael Burr
    Nov 16 '18 at 21:57










  • $begingroup$
    @MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
    $endgroup$
    – Cheerful Parsnip
    Nov 16 '18 at 22:01


















  • $begingroup$
    In what context does this come up?
    $endgroup$
    – Michael Burr
    Nov 16 '18 at 21:57










  • $begingroup$
    @MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
    $endgroup$
    – Cheerful Parsnip
    Nov 16 '18 at 22:01
















$begingroup$
In what context does this come up?
$endgroup$
– Michael Burr
Nov 16 '18 at 21:57




$begingroup$
In what context does this come up?
$endgroup$
– Michael Burr
Nov 16 '18 at 21:57












$begingroup$
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
$endgroup$
– Cheerful Parsnip
Nov 16 '18 at 22:01




$begingroup$
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
$endgroup$
– Cheerful Parsnip
Nov 16 '18 at 22:01










3 Answers
3






active

oldest

votes


















3












$begingroup$

The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$

where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}

and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$






share|cite|improve this answer









$endgroup$





















    7












    $begingroup$

    The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$






    share|cite|improve this answer









    $endgroup$





















      5












      $begingroup$

      Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001678%2fdefinition-of-binom-frac121%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        The definition is
        $$
        binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
        $$

        where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



        In the special case $x=1/2$, a different formula can be found. Indeed,
        begin{align}
        frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
        &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
        &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
        frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
        &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
        &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
        &=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
        end{align}

        and therefore
        $$
        binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
        $$






        share|cite|improve this answer









        $endgroup$


















          3












          $begingroup$

          The definition is
          $$
          binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
          $$

          where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



          In the special case $x=1/2$, a different formula can be found. Indeed,
          begin{align}
          frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
          &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
          &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
          frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
          &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
          &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
          &=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
          end{align}

          and therefore
          $$
          binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
          $$






          share|cite|improve this answer









          $endgroup$
















            3












            3








            3





            $begingroup$

            The definition is
            $$
            binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
            $$

            where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



            In the special case $x=1/2$, a different formula can be found. Indeed,
            begin{align}
            frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
            &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
            &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
            frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
            &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
            &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
            &=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
            end{align}

            and therefore
            $$
            binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
            $$






            share|cite|improve this answer









            $endgroup$



            The definition is
            $$
            binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
            $$

            where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



            In the special case $x=1/2$, a different formula can be found. Indeed,
            begin{align}
            frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
            &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
            &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
            frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
            &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
            &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
            &=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
            end{align}

            and therefore
            $$
            binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 16 '18 at 22:16









            egregegreg

            182k1485203




            182k1485203























                7












                $begingroup$

                The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$






                share|cite|improve this answer









                $endgroup$


















                  7












                  $begingroup$

                  The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$






                  share|cite|improve this answer









                  $endgroup$
















                    7












                    7








                    7





                    $begingroup$

                    The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$






                    share|cite|improve this answer









                    $endgroup$



                    The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 16 '18 at 21:57









                    Saucy O'PathSaucy O'Path

                    5,9691627




                    5,9691627























                        5












                        $begingroup$

                        Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$






                        share|cite|improve this answer









                        $endgroup$


















                          5












                          $begingroup$

                          Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$






                          share|cite|improve this answer









                          $endgroup$
















                            5












                            5








                            5





                            $begingroup$

                            Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$






                            share|cite|improve this answer









                            $endgroup$



                            Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 16 '18 at 22:04









                            herb steinbergherb steinberg

                            2,7582310




                            2,7582310






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001678%2fdefinition-of-binom-frac121%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith