Definition of $binom{frac{1}{2}}{1}$?
$begingroup$
How interpret the combination
$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?
combinatorics binomial-coefficients
$endgroup$
add a comment |
$begingroup$
How interpret the combination
$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?
combinatorics binomial-coefficients
$endgroup$
$begingroup$
In what context does this come up?
$endgroup$
– Michael Burr
Nov 16 '18 at 21:57
$begingroup$
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
$endgroup$
– Cheerful Parsnip
Nov 16 '18 at 22:01
add a comment |
$begingroup$
How interpret the combination
$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?
combinatorics binomial-coefficients
$endgroup$
How interpret the combination
$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?
combinatorics binomial-coefficients
combinatorics binomial-coefficients
edited Jan 13 at 22:53


Simply Beautiful Art
50.5k578182
50.5k578182
asked Nov 16 '18 at 21:54
MedoMedo
632214
632214
$begingroup$
In what context does this come up?
$endgroup$
– Michael Burr
Nov 16 '18 at 21:57
$begingroup$
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
$endgroup$
– Cheerful Parsnip
Nov 16 '18 at 22:01
add a comment |
$begingroup$
In what context does this come up?
$endgroup$
– Michael Burr
Nov 16 '18 at 21:57
$begingroup$
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
$endgroup$
– Cheerful Parsnip
Nov 16 '18 at 22:01
$begingroup$
In what context does this come up?
$endgroup$
– Michael Burr
Nov 16 '18 at 21:57
$begingroup$
In what context does this come up?
$endgroup$
– Michael Burr
Nov 16 '18 at 21:57
$begingroup$
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
$endgroup$
– Cheerful Parsnip
Nov 16 '18 at 22:01
$begingroup$
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
$endgroup$
– Cheerful Parsnip
Nov 16 '18 at 22:01
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
$endgroup$
add a comment |
$begingroup$
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
$endgroup$
add a comment |
$begingroup$
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001678%2fdefinition-of-binom-frac121%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
$endgroup$
add a comment |
$begingroup$
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
$endgroup$
add a comment |
$begingroup$
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
$endgroup$
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
answered Nov 16 '18 at 22:16


egregegreg
182k1485203
182k1485203
add a comment |
add a comment |
$begingroup$
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
$endgroup$
add a comment |
$begingroup$
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
$endgroup$
add a comment |
$begingroup$
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
$endgroup$
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
answered Nov 16 '18 at 21:57
Saucy O'PathSaucy O'Path
5,9691627
5,9691627
add a comment |
add a comment |
$begingroup$
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
$endgroup$
add a comment |
$begingroup$
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
$endgroup$
add a comment |
$begingroup$
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
$endgroup$
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
answered Nov 16 '18 at 22:04
herb steinbergherb steinberg
2,7582310
2,7582310
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001678%2fdefinition-of-binom-frac121%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In what context does this come up?
$endgroup$
– Michael Burr
Nov 16 '18 at 21:57
$begingroup$
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
$endgroup$
– Cheerful Parsnip
Nov 16 '18 at 22:01