How to calculate the division and remainder of a big number manually












1












$begingroup$


Let $x = 2017^{2017}$. How can I manually determine:




  1. The remainder of the division of $x$ by $31$

  2. The least significant digit of $x$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Your title does not match with the body. Namely, the title mentions calculating the division (I assume you mean quotient), but the body does not require the quotient.
    $endgroup$
    – Kenny Lau
    May 6 '17 at 2:42


















1












$begingroup$


Let $x = 2017^{2017}$. How can I manually determine:




  1. The remainder of the division of $x$ by $31$

  2. The least significant digit of $x$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Your title does not match with the body. Namely, the title mentions calculating the division (I assume you mean quotient), but the body does not require the quotient.
    $endgroup$
    – Kenny Lau
    May 6 '17 at 2:42
















1












1








1


2



$begingroup$


Let $x = 2017^{2017}$. How can I manually determine:




  1. The remainder of the division of $x$ by $31$

  2. The least significant digit of $x$










share|cite|improve this question









$endgroup$




Let $x = 2017^{2017}$. How can I manually determine:




  1. The remainder of the division of $x$ by $31$

  2. The least significant digit of $x$







elementary-number-theory discrete-mathematics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 6 '17 at 2:41









shardlshardl

204




204








  • 2




    $begingroup$
    Your title does not match with the body. Namely, the title mentions calculating the division (I assume you mean quotient), but the body does not require the quotient.
    $endgroup$
    – Kenny Lau
    May 6 '17 at 2:42
















  • 2




    $begingroup$
    Your title does not match with the body. Namely, the title mentions calculating the division (I assume you mean quotient), but the body does not require the quotient.
    $endgroup$
    – Kenny Lau
    May 6 '17 at 2:42










2




2




$begingroup$
Your title does not match with the body. Namely, the title mentions calculating the division (I assume you mean quotient), but the body does not require the quotient.
$endgroup$
– Kenny Lau
May 6 '17 at 2:42






$begingroup$
Your title does not match with the body. Namely, the title mentions calculating the division (I assume you mean quotient), but the body does not require the quotient.
$endgroup$
– Kenny Lau
May 6 '17 at 2:42












1 Answer
1






active

oldest

votes


















2












$begingroup$

FIRST QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{30times67+7} \
&=& left(2017^{30}right)^{67} times 2017^7 \
&equiv& 1^{67} times 2^7 & pmod {31} \
&=& 128 \
&equiv& 4 & pmod {31}
end{array}$$



Note that $2017^{30} equiv 1 pmod{31}$ is Fermat's little theorem.



SECOND QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{4times504+1} \
&=& left(2017^{4}right)^{504} times 2017 \
&equiv& 1^{504} times 7 & pmod {10} \
&=& 7 \
end{array}$$



Note that $2017^4 equiv 1 pmod{10}$ is Euler's totient theorem.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Why $2017^{{30}^{67}} times 2017^7 equiv 1^{67} times 2^7 pmod {31}$?
    $endgroup$
    – shardl
    May 6 '17 at 3:38






  • 1




    $begingroup$
    Because $2017^{30}equiv1pmod{31}$ and $2017equiv 2pmod{31}$.
    $endgroup$
    – Kenny Lau
    May 6 '17 at 3:39











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2267991%2fhow-to-calculate-the-division-and-remainder-of-a-big-number-manually%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

FIRST QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{30times67+7} \
&=& left(2017^{30}right)^{67} times 2017^7 \
&equiv& 1^{67} times 2^7 & pmod {31} \
&=& 128 \
&equiv& 4 & pmod {31}
end{array}$$



Note that $2017^{30} equiv 1 pmod{31}$ is Fermat's little theorem.



SECOND QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{4times504+1} \
&=& left(2017^{4}right)^{504} times 2017 \
&equiv& 1^{504} times 7 & pmod {10} \
&=& 7 \
end{array}$$



Note that $2017^4 equiv 1 pmod{10}$ is Euler's totient theorem.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Why $2017^{{30}^{67}} times 2017^7 equiv 1^{67} times 2^7 pmod {31}$?
    $endgroup$
    – shardl
    May 6 '17 at 3:38






  • 1




    $begingroup$
    Because $2017^{30}equiv1pmod{31}$ and $2017equiv 2pmod{31}$.
    $endgroup$
    – Kenny Lau
    May 6 '17 at 3:39
















2












$begingroup$

FIRST QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{30times67+7} \
&=& left(2017^{30}right)^{67} times 2017^7 \
&equiv& 1^{67} times 2^7 & pmod {31} \
&=& 128 \
&equiv& 4 & pmod {31}
end{array}$$



Note that $2017^{30} equiv 1 pmod{31}$ is Fermat's little theorem.



SECOND QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{4times504+1} \
&=& left(2017^{4}right)^{504} times 2017 \
&equiv& 1^{504} times 7 & pmod {10} \
&=& 7 \
end{array}$$



Note that $2017^4 equiv 1 pmod{10}$ is Euler's totient theorem.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Why $2017^{{30}^{67}} times 2017^7 equiv 1^{67} times 2^7 pmod {31}$?
    $endgroup$
    – shardl
    May 6 '17 at 3:38






  • 1




    $begingroup$
    Because $2017^{30}equiv1pmod{31}$ and $2017equiv 2pmod{31}$.
    $endgroup$
    – Kenny Lau
    May 6 '17 at 3:39














2












2








2





$begingroup$

FIRST QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{30times67+7} \
&=& left(2017^{30}right)^{67} times 2017^7 \
&equiv& 1^{67} times 2^7 & pmod {31} \
&=& 128 \
&equiv& 4 & pmod {31}
end{array}$$



Note that $2017^{30} equiv 1 pmod{31}$ is Fermat's little theorem.



SECOND QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{4times504+1} \
&=& left(2017^{4}right)^{504} times 2017 \
&equiv& 1^{504} times 7 & pmod {10} \
&=& 7 \
end{array}$$



Note that $2017^4 equiv 1 pmod{10}$ is Euler's totient theorem.






share|cite|improve this answer









$endgroup$



FIRST QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{30times67+7} \
&=& left(2017^{30}right)^{67} times 2017^7 \
&equiv& 1^{67} times 2^7 & pmod {31} \
&=& 128 \
&equiv& 4 & pmod {31}
end{array}$$



Note that $2017^{30} equiv 1 pmod{31}$ is Fermat's little theorem.



SECOND QUESTION



$$begin{array}{rcll}
2017^{2017} &=& 2017^{4times504+1} \
&=& left(2017^{4}right)^{504} times 2017 \
&equiv& 1^{504} times 7 & pmod {10} \
&=& 7 \
end{array}$$



Note that $2017^4 equiv 1 pmod{10}$ is Euler's totient theorem.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered May 6 '17 at 2:46









Kenny LauKenny Lau

19.9k2159




19.9k2159












  • $begingroup$
    Why $2017^{{30}^{67}} times 2017^7 equiv 1^{67} times 2^7 pmod {31}$?
    $endgroup$
    – shardl
    May 6 '17 at 3:38






  • 1




    $begingroup$
    Because $2017^{30}equiv1pmod{31}$ and $2017equiv 2pmod{31}$.
    $endgroup$
    – Kenny Lau
    May 6 '17 at 3:39


















  • $begingroup$
    Why $2017^{{30}^{67}} times 2017^7 equiv 1^{67} times 2^7 pmod {31}$?
    $endgroup$
    – shardl
    May 6 '17 at 3:38






  • 1




    $begingroup$
    Because $2017^{30}equiv1pmod{31}$ and $2017equiv 2pmod{31}$.
    $endgroup$
    – Kenny Lau
    May 6 '17 at 3:39
















$begingroup$
Why $2017^{{30}^{67}} times 2017^7 equiv 1^{67} times 2^7 pmod {31}$?
$endgroup$
– shardl
May 6 '17 at 3:38




$begingroup$
Why $2017^{{30}^{67}} times 2017^7 equiv 1^{67} times 2^7 pmod {31}$?
$endgroup$
– shardl
May 6 '17 at 3:38




1




1




$begingroup$
Because $2017^{30}equiv1pmod{31}$ and $2017equiv 2pmod{31}$.
$endgroup$
– Kenny Lau
May 6 '17 at 3:39




$begingroup$
Because $2017^{30}equiv1pmod{31}$ and $2017equiv 2pmod{31}$.
$endgroup$
– Kenny Lau
May 6 '17 at 3:39


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2267991%2fhow-to-calculate-the-division-and-remainder-of-a-big-number-manually%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]