if $a$ is an algebraic integer and $min mathbb{Z}$ then $a+m$ is an algebraic integer.












1












$begingroup$


I tried to use newton binomial, if $p_a(x) = sum_0^nb_kx^k$ , then $b_k(a+m)^k =b_ka^k +b_ksum_0^{k-1}a^im^{k-i}$, denote $T_k=b_ksum_0^{k-1}a^im^{k-i}$, one gets that $p_{a}(x)-(sum_1^nT_k ) - mb_0$ has $(m+a)$ as a root, but the problem is that $T_k$ are not guaranteed to be integers. I also worked out the $acdot m$ must be an algebraic integer (by taking $p_a(x)=sum_0^nb_kx^k$ and define: $sum_0^n m^{n-k}b_kx^k$ ), yet I didn't succeed to use it in order to manipulate $p_{a}(x)-(sum_1^nT_k ) - mb_0$ back to $mathbb{Z}[x]$










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I tried to use newton binomial, if $p_a(x) = sum_0^nb_kx^k$ , then $b_k(a+m)^k =b_ka^k +b_ksum_0^{k-1}a^im^{k-i}$, denote $T_k=b_ksum_0^{k-1}a^im^{k-i}$, one gets that $p_{a}(x)-(sum_1^nT_k ) - mb_0$ has $(m+a)$ as a root, but the problem is that $T_k$ are not guaranteed to be integers. I also worked out the $acdot m$ must be an algebraic integer (by taking $p_a(x)=sum_0^nb_kx^k$ and define: $sum_0^n m^{n-k}b_kx^k$ ), yet I didn't succeed to use it in order to manipulate $p_{a}(x)-(sum_1^nT_k ) - mb_0$ back to $mathbb{Z}[x]$










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I tried to use newton binomial, if $p_a(x) = sum_0^nb_kx^k$ , then $b_k(a+m)^k =b_ka^k +b_ksum_0^{k-1}a^im^{k-i}$, denote $T_k=b_ksum_0^{k-1}a^im^{k-i}$, one gets that $p_{a}(x)-(sum_1^nT_k ) - mb_0$ has $(m+a)$ as a root, but the problem is that $T_k$ are not guaranteed to be integers. I also worked out the $acdot m$ must be an algebraic integer (by taking $p_a(x)=sum_0^nb_kx^k$ and define: $sum_0^n m^{n-k}b_kx^k$ ), yet I didn't succeed to use it in order to manipulate $p_{a}(x)-(sum_1^nT_k ) - mb_0$ back to $mathbb{Z}[x]$










      share|cite|improve this question









      $endgroup$




      I tried to use newton binomial, if $p_a(x) = sum_0^nb_kx^k$ , then $b_k(a+m)^k =b_ka^k +b_ksum_0^{k-1}a^im^{k-i}$, denote $T_k=b_ksum_0^{k-1}a^im^{k-i}$, one gets that $p_{a}(x)-(sum_1^nT_k ) - mb_0$ has $(m+a)$ as a root, but the problem is that $T_k$ are not guaranteed to be integers. I also worked out the $acdot m$ must be an algebraic integer (by taking $p_a(x)=sum_0^nb_kx^k$ and define: $sum_0^n m^{n-k}b_kx^k$ ), yet I didn't succeed to use it in order to manipulate $p_{a}(x)-(sum_1^nT_k ) - mb_0$ back to $mathbb{Z}[x]$







      number-theory algebraic-number-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 14 at 4:17









      dandan

      559613




      559613






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Hint: If $P(x)=sum_{k=0}^n b_k X^k$ has $a$ as a root, then



          $$P(X-m)=sum_{k=0}^n b_k (X-m)^k$$
          has $a+m$ as a root. As a polynomial this does have integer coefficients.



          Your mistake was thinking about this as an expression in $a$ not as a polynomial. You need the coefficient of $a^j$ to be an integer, not $T_k$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072841%2fif-a-is-an-algebraic-integer-and-m-in-mathbbz-then-am-is-an-algebraic%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Hint: If $P(x)=sum_{k=0}^n b_k X^k$ has $a$ as a root, then



            $$P(X-m)=sum_{k=0}^n b_k (X-m)^k$$
            has $a+m$ as a root. As a polynomial this does have integer coefficients.



            Your mistake was thinking about this as an expression in $a$ not as a polynomial. You need the coefficient of $a^j$ to be an integer, not $T_k$.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Hint: If $P(x)=sum_{k=0}^n b_k X^k$ has $a$ as a root, then



              $$P(X-m)=sum_{k=0}^n b_k (X-m)^k$$
              has $a+m$ as a root. As a polynomial this does have integer coefficients.



              Your mistake was thinking about this as an expression in $a$ not as a polynomial. You need the coefficient of $a^j$ to be an integer, not $T_k$.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Hint: If $P(x)=sum_{k=0}^n b_k X^k$ has $a$ as a root, then



                $$P(X-m)=sum_{k=0}^n b_k (X-m)^k$$
                has $a+m$ as a root. As a polynomial this does have integer coefficients.



                Your mistake was thinking about this as an expression in $a$ not as a polynomial. You need the coefficient of $a^j$ to be an integer, not $T_k$.






                share|cite|improve this answer









                $endgroup$



                Hint: If $P(x)=sum_{k=0}^n b_k X^k$ has $a$ as a root, then



                $$P(X-m)=sum_{k=0}^n b_k (X-m)^k$$
                has $a+m$ as a root. As a polynomial this does have integer coefficients.



                Your mistake was thinking about this as an expression in $a$ not as a polynomial. You need the coefficient of $a^j$ to be an integer, not $T_k$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 14 at 4:22









                N. S.N. S.

                104k7112208




                104k7112208






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072841%2fif-a-is-an-algebraic-integer-and-m-in-mathbbz-then-am-is-an-algebraic%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    SQL update select statement

                    'app-layout' is not a known element: how to share Component with different Modules