Evaluating $int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin...
$begingroup$
In order to compute, in an elementary way,
$displaystyle int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
(see Evaluating $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$ )
i need to show, in a simple way, that:
$displaystyle int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x)dx=dfrac{Gln 2}{2}$
$G$ being the Catalan constant.
The reason of my interest for this question is, if i am right, that this formula permits to find out a relation between integrals:
$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx$
$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$
$displaystyle int_0^{tfrac{pi}{4}}big(ln(cos x)big)^2 dfrac{}{}dx$
and some constants.
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
In order to compute, in an elementary way,
$displaystyle int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
(see Evaluating $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$ )
i need to show, in a simple way, that:
$displaystyle int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x)dx=dfrac{Gln 2}{2}$
$G$ being the Catalan constant.
The reason of my interest for this question is, if i am right, that this formula permits to find out a relation between integrals:
$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx$
$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$
$displaystyle int_0^{tfrac{pi}{4}}big(ln(cos x)big)^2 dfrac{}{}dx$
and some constants.
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
In order to compute, in an elementary way,
$displaystyle int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
(see Evaluating $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$ )
i need to show, in a simple way, that:
$displaystyle int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x)dx=dfrac{Gln 2}{2}$
$G$ being the Catalan constant.
The reason of my interest for this question is, if i am right, that this formula permits to find out a relation between integrals:
$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx$
$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$
$displaystyle int_0^{tfrac{pi}{4}}big(ln(cos x)big)^2 dfrac{}{}dx$
and some constants.
integration definite-integrals
$endgroup$
In order to compute, in an elementary way,
$displaystyle int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
(see Evaluating $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$ )
i need to show, in a simple way, that:
$displaystyle int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x)dx=dfrac{Gln 2}{2}$
$G$ being the Catalan constant.
The reason of my interest for this question is, if i am right, that this formula permits to find out a relation between integrals:
$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx$
$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$
$displaystyle int_0^{tfrac{pi}{4}}big(ln(cos x)big)^2 dfrac{}{}dx$
and some constants.
integration definite-integrals
integration definite-integrals
edited Jan 15 at 13:23
Lorenzo B.
1,8402520
1,8402520
asked Jul 6 '16 at 11:32
FDPFDP
5,45211524
5,45211524
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Using Simpsons rule we know
$$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
$$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$
Plugging this in the original integrals yields:
$$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$
Splitting the logarithms and rearranging yields:
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
+left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$
The first part yields
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$
and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
the second part yields
$$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$
$endgroup$
$begingroup$
Very nice ! Thank you
$endgroup$
– FDP
Jul 6 '16 at 20:07
add a comment |
$begingroup$
begin{align}
I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
& quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
&=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
&=dfrac{ln 2}{2}G\
end{align}
It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.
This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
begin{align}
int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
&=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
&=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
&=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
&=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
&=G\
end{align}
$endgroup$
$begingroup$
Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
$endgroup$
– FDP
Jul 6 '16 at 19:57
$begingroup$
Thanks for the link to this paper.
$endgroup$
– FDP
Jul 6 '16 at 21:51
add a comment |
$begingroup$
Relationship between the proposed integrals.
$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$
$endgroup$
$begingroup$
Have you an elementary proof of this?
$endgroup$
– FDP
Jul 6 '16 at 21:54
$begingroup$
Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
$endgroup$
– FDP
Jul 6 '16 at 21:57
$begingroup$
I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
$endgroup$
– FDP
Jul 6 '16 at 23:37
$begingroup$
Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
$endgroup$
– user178256
Jul 7 '16 at 6:16
$begingroup$
Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
$endgroup$
– FDP
Jul 7 '16 at 8:29
|
show 2 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1850830%2fevaluating-int-0-tfrac-pi4-ln-cos-x-sin-x-ln-cos-x-dx-int-0-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using Simpsons rule we know
$$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
$$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$
Plugging this in the original integrals yields:
$$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$
Splitting the logarithms and rearranging yields:
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
+left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$
The first part yields
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$
and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
the second part yields
$$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$
$endgroup$
$begingroup$
Very nice ! Thank you
$endgroup$
– FDP
Jul 6 '16 at 20:07
add a comment |
$begingroup$
Using Simpsons rule we know
$$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
$$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$
Plugging this in the original integrals yields:
$$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$
Splitting the logarithms and rearranging yields:
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
+left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$
The first part yields
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$
and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
the second part yields
$$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$
$endgroup$
$begingroup$
Very nice ! Thank you
$endgroup$
– FDP
Jul 6 '16 at 20:07
add a comment |
$begingroup$
Using Simpsons rule we know
$$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
$$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$
Plugging this in the original integrals yields:
$$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$
Splitting the logarithms and rearranging yields:
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
+left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$
The first part yields
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$
and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
the second part yields
$$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$
$endgroup$
Using Simpsons rule we know
$$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
$$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$
Plugging this in the original integrals yields:
$$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$
Splitting the logarithms and rearranging yields:
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
+left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$
The first part yields
$$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$
and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
the second part yields
$$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$
edited Jul 6 '16 at 19:30
answered Jul 6 '16 at 18:52
Erik JurriënErik Jurriën
29617
29617
$begingroup$
Very nice ! Thank you
$endgroup$
– FDP
Jul 6 '16 at 20:07
add a comment |
$begingroup$
Very nice ! Thank you
$endgroup$
– FDP
Jul 6 '16 at 20:07
$begingroup$
Very nice ! Thank you
$endgroup$
– FDP
Jul 6 '16 at 20:07
$begingroup$
Very nice ! Thank you
$endgroup$
– FDP
Jul 6 '16 at 20:07
add a comment |
$begingroup$
begin{align}
I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
& quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
&=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
&=dfrac{ln 2}{2}G\
end{align}
It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.
This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
begin{align}
int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
&=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
&=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
&=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
&=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
&=G\
end{align}
$endgroup$
$begingroup$
Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
$endgroup$
– FDP
Jul 6 '16 at 19:57
$begingroup$
Thanks for the link to this paper.
$endgroup$
– FDP
Jul 6 '16 at 21:51
add a comment |
$begingroup$
begin{align}
I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
& quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
&=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
&=dfrac{ln 2}{2}G\
end{align}
It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.
This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
begin{align}
int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
&=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
&=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
&=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
&=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
&=G\
end{align}
$endgroup$
$begingroup$
Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
$endgroup$
– FDP
Jul 6 '16 at 19:57
$begingroup$
Thanks for the link to this paper.
$endgroup$
– FDP
Jul 6 '16 at 21:51
add a comment |
$begingroup$
begin{align}
I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
& quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
&=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
&=dfrac{ln 2}{2}G\
end{align}
It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.
This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
begin{align}
int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
&=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
&=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
&=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
&=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
&=G\
end{align}
$endgroup$
begin{align}
I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
& quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
&=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
&=dfrac{ln 2}{2}G\
end{align}
It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.
This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
begin{align}
int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
&=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
&=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
&=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
&=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
&=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
&=G\
end{align}
edited Jul 6 '16 at 23:16
answered Jul 6 '16 at 18:53
Raymond ManzoniRaymond Manzoni
37.2k563117
37.2k563117
$begingroup$
Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
$endgroup$
– FDP
Jul 6 '16 at 19:57
$begingroup$
Thanks for the link to this paper.
$endgroup$
– FDP
Jul 6 '16 at 21:51
add a comment |
$begingroup$
Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
$endgroup$
– FDP
Jul 6 '16 at 19:57
$begingroup$
Thanks for the link to this paper.
$endgroup$
– FDP
Jul 6 '16 at 21:51
$begingroup$
Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
$endgroup$
– FDP
Jul 6 '16 at 19:57
$begingroup$
Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
$endgroup$
– FDP
Jul 6 '16 at 19:57
$begingroup$
Thanks for the link to this paper.
$endgroup$
– FDP
Jul 6 '16 at 21:51
$begingroup$
Thanks for the link to this paper.
$endgroup$
– FDP
Jul 6 '16 at 21:51
add a comment |
$begingroup$
Relationship between the proposed integrals.
$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$
$endgroup$
$begingroup$
Have you an elementary proof of this?
$endgroup$
– FDP
Jul 6 '16 at 21:54
$begingroup$
Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
$endgroup$
– FDP
Jul 6 '16 at 21:57
$begingroup$
I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
$endgroup$
– FDP
Jul 6 '16 at 23:37
$begingroup$
Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
$endgroup$
– user178256
Jul 7 '16 at 6:16
$begingroup$
Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
$endgroup$
– FDP
Jul 7 '16 at 8:29
|
show 2 more comments
$begingroup$
Relationship between the proposed integrals.
$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$
$endgroup$
$begingroup$
Have you an elementary proof of this?
$endgroup$
– FDP
Jul 6 '16 at 21:54
$begingroup$
Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
$endgroup$
– FDP
Jul 6 '16 at 21:57
$begingroup$
I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
$endgroup$
– FDP
Jul 6 '16 at 23:37
$begingroup$
Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
$endgroup$
– user178256
Jul 7 '16 at 6:16
$begingroup$
Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
$endgroup$
– FDP
Jul 7 '16 at 8:29
|
show 2 more comments
$begingroup$
Relationship between the proposed integrals.
$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$
$endgroup$
Relationship between the proposed integrals.
$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$
answered Jul 6 '16 at 21:24
user178256user178256
2,1401832
2,1401832
$begingroup$
Have you an elementary proof of this?
$endgroup$
– FDP
Jul 6 '16 at 21:54
$begingroup$
Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
$endgroup$
– FDP
Jul 6 '16 at 21:57
$begingroup$
I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
$endgroup$
– FDP
Jul 6 '16 at 23:37
$begingroup$
Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
$endgroup$
– user178256
Jul 7 '16 at 6:16
$begingroup$
Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
$endgroup$
– FDP
Jul 7 '16 at 8:29
|
show 2 more comments
$begingroup$
Have you an elementary proof of this?
$endgroup$
– FDP
Jul 6 '16 at 21:54
$begingroup$
Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
$endgroup$
– FDP
Jul 6 '16 at 21:57
$begingroup$
I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
$endgroup$
– FDP
Jul 6 '16 at 23:37
$begingroup$
Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
$endgroup$
– user178256
Jul 7 '16 at 6:16
$begingroup$
Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
$endgroup$
– FDP
Jul 7 '16 at 8:29
$begingroup$
Have you an elementary proof of this?
$endgroup$
– FDP
Jul 6 '16 at 21:54
$begingroup$
Have you an elementary proof of this?
$endgroup$
– FDP
Jul 6 '16 at 21:54
$begingroup$
Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
$endgroup$
– FDP
Jul 6 '16 at 21:57
$begingroup$
Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
$endgroup$
– FDP
Jul 6 '16 at 21:57
$begingroup$
I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
$endgroup$
– FDP
Jul 6 '16 at 23:37
$begingroup$
I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
$endgroup$
– FDP
Jul 6 '16 at 23:37
$begingroup$
Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
$endgroup$
– user178256
Jul 7 '16 at 6:16
$begingroup$
Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
$endgroup$
– user178256
Jul 7 '16 at 6:16
$begingroup$
Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
$endgroup$
– FDP
Jul 7 '16 at 8:29
$begingroup$
Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
$endgroup$
– FDP
Jul 7 '16 at 8:29
|
show 2 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1850830%2fevaluating-int-0-tfrac-pi4-ln-cos-x-sin-x-ln-cos-x-dx-int-0-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown