Evaluating $int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin...












4












$begingroup$


In order to compute, in an elementary way,



$displaystyle int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$



(see Evaluating $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$ )



i need to show, in a simple way, that:



$displaystyle int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x)dx=dfrac{Gln 2}{2}$



$G$ being the Catalan constant.



The reason of my interest for this question is, if i am right, that this formula permits to find out a relation between integrals:



$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx$



$displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$



$displaystyle int_0^{tfrac{pi}{4}}big(ln(cos x)big)^2 dfrac{}{}dx$



and some constants.










share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    In order to compute, in an elementary way,



    $displaystyle int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$



    (see Evaluating $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$ )



    i need to show, in a simple way, that:



    $displaystyle int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x)dx=dfrac{Gln 2}{2}$



    $G$ being the Catalan constant.



    The reason of my interest for this question is, if i am right, that this formula permits to find out a relation between integrals:



    $displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx$



    $displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$



    $displaystyle int_0^{tfrac{pi}{4}}big(ln(cos x)big)^2 dfrac{}{}dx$



    and some constants.










    share|cite|improve this question











    $endgroup$















      4












      4








      4


      1



      $begingroup$


      In order to compute, in an elementary way,



      $displaystyle int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$



      (see Evaluating $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$ )



      i need to show, in a simple way, that:



      $displaystyle int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x)dx=dfrac{Gln 2}{2}$



      $G$ being the Catalan constant.



      The reason of my interest for this question is, if i am right, that this formula permits to find out a relation between integrals:



      $displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx$



      $displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$



      $displaystyle int_0^{tfrac{pi}{4}}big(ln(cos x)big)^2 dfrac{}{}dx$



      and some constants.










      share|cite|improve this question











      $endgroup$




      In order to compute, in an elementary way,



      $displaystyle int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$



      (see Evaluating $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$ )



      i need to show, in a simple way, that:



      $displaystyle int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x) dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x)dx=dfrac{Gln 2}{2}$



      $G$ being the Catalan constant.



      The reason of my interest for this question is, if i am right, that this formula permits to find out a relation between integrals:



      $displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx$



      $displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$



      $displaystyle int_0^{tfrac{pi}{4}}big(ln(cos x)big)^2 dfrac{}{}dx$



      and some constants.







      integration definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 15 at 13:23









      Lorenzo B.

      1,8402520




      1,8402520










      asked Jul 6 '16 at 11:32









      FDPFDP

      5,45211524




      5,45211524






















          3 Answers
          3






          active

          oldest

          votes


















          5












          $begingroup$

          Using Simpsons rule we know
          $$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
          $$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$



          Plugging this in the original integrals yields:
          $$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
          int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$



          Splitting the logarithms and rearranging yields:
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
          +left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$



          The first part yields
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$



          and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
          the second part yields
          $$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Very nice ! Thank you
            $endgroup$
            – FDP
            Jul 6 '16 at 20:07



















          1












          $begingroup$

          begin{align}
          I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          & quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
          &=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
          &=dfrac{ln 2}{2}G\
          end{align}
          It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.

          This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
          begin{align}
          int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
          &=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
          &=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
          &=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
          &=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
          &=G\
          end{align}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
            $endgroup$
            – FDP
            Jul 6 '16 at 19:57












          • $begingroup$
            Thanks for the link to this paper.
            $endgroup$
            – FDP
            Jul 6 '16 at 21:51



















          0












          $begingroup$

          Relationship between the proposed integrals.



          $displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Have you an elementary proof of this?
            $endgroup$
            – FDP
            Jul 6 '16 at 21:54












          • $begingroup$
            Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
            $endgroup$
            – FDP
            Jul 6 '16 at 21:57










          • $begingroup$
            I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
            $endgroup$
            – FDP
            Jul 6 '16 at 23:37










          • $begingroup$
            Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
            $endgroup$
            – user178256
            Jul 7 '16 at 6:16










          • $begingroup$
            Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
            $endgroup$
            – FDP
            Jul 7 '16 at 8:29













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1850830%2fevaluating-int-0-tfrac-pi4-ln-cos-x-sin-x-ln-cos-x-dx-int-0-t%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          3 Answers
          3






          active

          oldest

          votes








          3 Answers
          3






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Using Simpsons rule we know
          $$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
          $$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$



          Plugging this in the original integrals yields:
          $$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
          int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$



          Splitting the logarithms and rearranging yields:
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
          +left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$



          The first part yields
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$



          and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
          the second part yields
          $$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Very nice ! Thank you
            $endgroup$
            – FDP
            Jul 6 '16 at 20:07
















          5












          $begingroup$

          Using Simpsons rule we know
          $$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
          $$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$



          Plugging this in the original integrals yields:
          $$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
          int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$



          Splitting the logarithms and rearranging yields:
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
          +left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$



          The first part yields
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$



          and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
          the second part yields
          $$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Very nice ! Thank you
            $endgroup$
            – FDP
            Jul 6 '16 at 20:07














          5












          5








          5





          $begingroup$

          Using Simpsons rule we know
          $$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
          $$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$



          Plugging this in the original integrals yields:
          $$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
          int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$



          Splitting the logarithms and rearranging yields:
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
          +left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$



          The first part yields
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$



          and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
          the second part yields
          $$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$






          share|cite|improve this answer











          $endgroup$



          Using Simpsons rule we know
          $$cos(x)-sin(x)=sqrt{2}sinleft(frac{pi}{4}-xright)$$ and
          $$cos(x)+sin(x)=sqrt{2}cosleft(frac{pi}{4}-xright)$$



          Plugging this in the original integrals yields:
          $$int_0^{frac{pi}{4}}lnleft(sqrt{2}sinleft(frac{pi}{4}-xright)right)lnleft(cos(x)right)mathrm{d}x-
          int_0^{frac{pi}{4}}lnleft(sqrt{2}cosleft(frac{pi}{4}-xright)right)lnleft(sin(x)right)mathrm{d}x$$



          Splitting the logarithms and rearranging yields:
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x+\
          +left(int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x right)$$



          The first part yields
          $$int_0^{frac{pi}{4}}ln(sqrt{2})left(ln(cos(x))-ln(sin(x)right)mathrm{d}x = ln(sqrt{2})G=frac{Gln(2)}{2}$$



          and because $$int_0^bf(x)mathrm{d}x=int_0^bf(b-x)mathrm{d}x$$
          the second part yields
          $$int_0^{frac{pi}{4}}lnleft(sinleft(frac{pi}{4}-x right)right)ln(cos(x)) mathrm{d}x-int_0^{frac{pi}{4}}lnleft(cosleft(frac{pi}{4}-x right)right)ln(sin(x)) mathrm{d}x=0$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 6 '16 at 19:30

























          answered Jul 6 '16 at 18:52









          Erik JurriënErik Jurriën

          29617




          29617












          • $begingroup$
            Very nice ! Thank you
            $endgroup$
            – FDP
            Jul 6 '16 at 20:07


















          • $begingroup$
            Very nice ! Thank you
            $endgroup$
            – FDP
            Jul 6 '16 at 20:07
















          $begingroup$
          Very nice ! Thank you
          $endgroup$
          – FDP
          Jul 6 '16 at 20:07




          $begingroup$
          Very nice ! Thank you
          $endgroup$
          – FDP
          Jul 6 '16 at 20:07











          1












          $begingroup$

          begin{align}
          I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          & quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
          &=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
          &=dfrac{ln 2}{2}G\
          end{align}
          It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.

          This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
          begin{align}
          int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
          &=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
          &=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
          &=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
          &=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
          &=G\
          end{align}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
            $endgroup$
            – FDP
            Jul 6 '16 at 19:57












          • $begingroup$
            Thanks for the link to this paper.
            $endgroup$
            – FDP
            Jul 6 '16 at 21:51
















          1












          $begingroup$

          begin{align}
          I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          & quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
          &=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
          &=dfrac{ln 2}{2}G\
          end{align}
          It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.

          This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
          begin{align}
          int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
          &=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
          &=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
          &=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
          &=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
          &=G\
          end{align}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
            $endgroup$
            – FDP
            Jul 6 '16 at 19:57












          • $begingroup$
            Thanks for the link to this paper.
            $endgroup$
            – FDP
            Jul 6 '16 at 21:51














          1












          1








          1





          $begingroup$

          begin{align}
          I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          & quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
          &=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
          &=dfrac{ln 2}{2}G\
          end{align}
          It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.

          This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
          begin{align}
          int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
          &=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
          &=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
          &=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
          &=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
          &=G\
          end{align}






          share|cite|improve this answer











          $endgroup$



          begin{align}
          I&:=int_0^{tfrac{pi}{4}}ln(cos x-sin x)ln(cos x),dx - int_0^{tfrac{pi}{4}}ln(cos x+sin x)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(x+frac {pi}4right)right)ln(cos x),dx - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          & quadtext{setting}; x=frac {pi}4-y; text{in the first integral gives}\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},cosleft(frac {pi}2-yright)right)lnleft(cosleft(frac {pi}2-frac {pi}4-yright)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(yright)right)lnleft(sinleft(y+frac {pi}4right)right),dy - int_0^{tfrac{pi}{4}}lnleft(sqrt{2},sinleft(x+frac {pi}4right)right)ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}left(ln(sqrt{2})+lnleft(sin xright)right)lnleft(sinleft(x+frac {pi}4right)right) - left(ln(sqrt{2})+lnleft(sinleft(x+frac {pi}4right)right)right)ln(sin x);dx\
          &=ln(sqrt{2})int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx\
          &=dfrac{ln 2}{2}G\
          end{align}
          It remains to prove that $displaystyle int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x);dx=G$.

          This is detailed around $(16)$ in this interesting paper by Jameson and Lord or using :
          begin{align}
          int_0^{tfrac{pi}{4}}lnleft(sinleft(x+frac {pi}4right)right)-ln(sin x),dx&=int_{tfrac{pi}{4}}^{tfrac{pi}{2}}lnleft(sin xright),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=int_0^{tfrac{pi}{4}}ln(cos x),dx-int_0^{tfrac{pi}{4}}ln(sin x),dx\
          &=-int_0^{tfrac{pi}{4}}ln(tan x),dx\
          &=-int_0^1frac{ln t}{1+t^2},dt,quadtext{integrated by parts}\
          &=-left.ln(t);arctan(t)right|_0^1+int_0^1frac{arctan(t)}{t},dt\
          &=int_0^1sum_{n=0}^infty (-1)^nfrac{t^{2n}}{2n+1},dt\
          &=left.sum_{n=0}^infty (-1)^nfrac{t^{2n+1}}{(2n+1)^2}right|_0^1\
          &=G\
          end{align}







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 6 '16 at 23:16

























          answered Jul 6 '16 at 18:53









          Raymond ManzoniRaymond Manzoni

          37.2k563117




          37.2k563117












          • $begingroup$
            Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
            $endgroup$
            – FDP
            Jul 6 '16 at 19:57












          • $begingroup$
            Thanks for the link to this paper.
            $endgroup$
            – FDP
            Jul 6 '16 at 21:51


















          • $begingroup$
            Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
            $endgroup$
            – FDP
            Jul 6 '16 at 19:57












          • $begingroup$
            Thanks for the link to this paper.
            $endgroup$
            – FDP
            Jul 6 '16 at 21:51
















          $begingroup$
          Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
          $endgroup$
          – FDP
          Jul 6 '16 at 19:57






          $begingroup$
          Thank you ! I was expecting such tricky proof. To say the truth i was close to find it. I hope it will help me to terminate my very lengthy computation
          $endgroup$
          – FDP
          Jul 6 '16 at 19:57














          $begingroup$
          Thanks for the link to this paper.
          $endgroup$
          – FDP
          Jul 6 '16 at 21:51




          $begingroup$
          Thanks for the link to this paper.
          $endgroup$
          – FDP
          Jul 6 '16 at 21:51











          0












          $begingroup$

          Relationship between the proposed integrals.



          $displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Have you an elementary proof of this?
            $endgroup$
            – FDP
            Jul 6 '16 at 21:54












          • $begingroup$
            Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
            $endgroup$
            – FDP
            Jul 6 '16 at 21:57










          • $begingroup$
            I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
            $endgroup$
            – FDP
            Jul 6 '16 at 23:37










          • $begingroup$
            Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
            $endgroup$
            – user178256
            Jul 7 '16 at 6:16










          • $begingroup$
            Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
            $endgroup$
            – FDP
            Jul 7 '16 at 8:29


















          0












          $begingroup$

          Relationship between the proposed integrals.



          $displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Have you an elementary proof of this?
            $endgroup$
            – FDP
            Jul 6 '16 at 21:54












          • $begingroup$
            Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
            $endgroup$
            – FDP
            Jul 6 '16 at 21:57










          • $begingroup$
            I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
            $endgroup$
            – FDP
            Jul 6 '16 at 23:37










          • $begingroup$
            Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
            $endgroup$
            – user178256
            Jul 7 '16 at 6:16










          • $begingroup$
            Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
            $endgroup$
            – FDP
            Jul 7 '16 at 8:29
















          0












          0








          0





          $begingroup$

          Relationship between the proposed integrals.



          $displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$






          share|cite|improve this answer









          $endgroup$



          Relationship between the proposed integrals.



          $displaystyle int_0^1 dfrac{ln(1+x)^2}{1+x^2}dx$-$displaystyle int_0^1 dfrac{ln(1+x)ln(1+x^2)}{1+x^2}dx=-frac{3pi}{16}ln^2{2}+dfrac{Gln 2}{2}$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jul 6 '16 at 21:24









          user178256user178256

          2,1401832




          2,1401832












          • $begingroup$
            Have you an elementary proof of this?
            $endgroup$
            – FDP
            Jul 6 '16 at 21:54












          • $begingroup$
            Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
            $endgroup$
            – FDP
            Jul 6 '16 at 21:57










          • $begingroup$
            I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
            $endgroup$
            – FDP
            Jul 6 '16 at 23:37










          • $begingroup$
            Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
            $endgroup$
            – user178256
            Jul 7 '16 at 6:16










          • $begingroup$
            Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
            $endgroup$
            – FDP
            Jul 7 '16 at 8:29




















          • $begingroup$
            Have you an elementary proof of this?
            $endgroup$
            – FDP
            Jul 6 '16 at 21:54












          • $begingroup$
            Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
            $endgroup$
            – FDP
            Jul 6 '16 at 21:57










          • $begingroup$
            I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
            $endgroup$
            – FDP
            Jul 6 '16 at 23:37










          • $begingroup$
            Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
            $endgroup$
            – user178256
            Jul 7 '16 at 6:16










          • $begingroup$
            Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
            $endgroup$
            – FDP
            Jul 7 '16 at 8:29


















          $begingroup$
          Have you an elementary proof of this?
          $endgroup$
          – FDP
          Jul 6 '16 at 21:54






          $begingroup$
          Have you an elementary proof of this?
          $endgroup$
          – FDP
          Jul 6 '16 at 21:54














          $begingroup$
          Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
          $endgroup$
          – FDP
          Jul 6 '16 at 21:57




          $begingroup$
          Anyway I think i don't need such precise value to compute $int_0^1 frac{x arctan x log left( 1-x^2right)}{1+x^2}dx$
          $endgroup$
          – FDP
          Jul 6 '16 at 21:57












          $begingroup$
          I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
          $endgroup$
          – FDP
          Jul 6 '16 at 23:37




          $begingroup$
          I think i see how to prove this. It relies on the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ using Simpson's rule and some properties of $cos$ and $sin$. Thank you, it will simplify my computation :)
          $endgroup$
          – FDP
          Jul 6 '16 at 23:37












          $begingroup$
          Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
          $endgroup$
          – user178256
          Jul 7 '16 at 6:16




          $begingroup$
          Consider $displaystyle int_0^1 dfrac{ln(1+x^2)^2}{1+x^2}dx$ $$x=frac{1-y}{1+y}$$ we obtain the relationship
          $endgroup$
          – user178256
          Jul 7 '16 at 6:16












          $begingroup$
          Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
          $endgroup$
          – FDP
          Jul 7 '16 at 8:29






          $begingroup$
          Direct computation using the change of variable $x=tan(y)$ is ok too. it leads, if i'm correct to the evaluation of $int_0^{frac{pi}{4}} (ln(cos x+sin x))^2dx$ but to make the things easier you need to substract to both integrals $int_0^{frac{pi}{4}} (ln(cos x)^2dx$. Thanks again, i haven't noticed this relation
          $endgroup$
          – FDP
          Jul 7 '16 at 8:29




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1850830%2fevaluating-int-0-tfrac-pi4-ln-cos-x-sin-x-ln-cos-x-dx-int-0-t%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

          Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

          A Topological Invariant for $pi_3(U(n))$