If $c | m_i$ Prove that $c| sum_{i=1}^r u_i m_i$ where $m_i,u_i,c in mathbb{Z}$ and $i=1,2,..,r$
$begingroup$
Let $m_1,m_1,...,m_r,u_1,u_2,...,u_r,c in mathbb{Z}$, such that $c | m_i$ for each $i in lbrace 1,2,...,r rbrace$.
Prove that $c| sum_{i=1}^r u_i m_i$
My attempt:
We have $c | m_i$ for each $i in lbrace 1,2,...,r rbrace$, then
$c|u_i m_i$ for each $i in lbrace 1,2,...,r rbrace$, thus
$exists k_iin mathbb{Z}$ such that $u_i m_i=k_i c$, $forall i$
then
$sum_{i=1}^r u_i m_i=sum_{i=1}^r k_i c=c sum_{i=1}^r k_i$
and since $sum_{i=1}^r k_i in mathbb{Z}$ we got that
$c|sum_{i=1}^r u_i m_i$
Is that true please ?, thanks.
algebra-precalculus number-theory divisibility
$endgroup$
add a comment |
$begingroup$
Let $m_1,m_1,...,m_r,u_1,u_2,...,u_r,c in mathbb{Z}$, such that $c | m_i$ for each $i in lbrace 1,2,...,r rbrace$.
Prove that $c| sum_{i=1}^r u_i m_i$
My attempt:
We have $c | m_i$ for each $i in lbrace 1,2,...,r rbrace$, then
$c|u_i m_i$ for each $i in lbrace 1,2,...,r rbrace$, thus
$exists k_iin mathbb{Z}$ such that $u_i m_i=k_i c$, $forall i$
then
$sum_{i=1}^r u_i m_i=sum_{i=1}^r k_i c=c sum_{i=1}^r k_i$
and since $sum_{i=1}^r k_i in mathbb{Z}$ we got that
$c|sum_{i=1}^r u_i m_i$
Is that true please ?, thanks.
algebra-precalculus number-theory divisibility
$endgroup$
3
$begingroup$
This is good for me
$endgroup$
– Thomas Lesgourgues
Jan 15 at 14:55
$begingroup$
@ThomasLesgourgues Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:11
add a comment |
$begingroup$
Let $m_1,m_1,...,m_r,u_1,u_2,...,u_r,c in mathbb{Z}$, such that $c | m_i$ for each $i in lbrace 1,2,...,r rbrace$.
Prove that $c| sum_{i=1}^r u_i m_i$
My attempt:
We have $c | m_i$ for each $i in lbrace 1,2,...,r rbrace$, then
$c|u_i m_i$ for each $i in lbrace 1,2,...,r rbrace$, thus
$exists k_iin mathbb{Z}$ such that $u_i m_i=k_i c$, $forall i$
then
$sum_{i=1}^r u_i m_i=sum_{i=1}^r k_i c=c sum_{i=1}^r k_i$
and since $sum_{i=1}^r k_i in mathbb{Z}$ we got that
$c|sum_{i=1}^r u_i m_i$
Is that true please ?, thanks.
algebra-precalculus number-theory divisibility
$endgroup$
Let $m_1,m_1,...,m_r,u_1,u_2,...,u_r,c in mathbb{Z}$, such that $c | m_i$ for each $i in lbrace 1,2,...,r rbrace$.
Prove that $c| sum_{i=1}^r u_i m_i$
My attempt:
We have $c | m_i$ for each $i in lbrace 1,2,...,r rbrace$, then
$c|u_i m_i$ for each $i in lbrace 1,2,...,r rbrace$, thus
$exists k_iin mathbb{Z}$ such that $u_i m_i=k_i c$, $forall i$
then
$sum_{i=1}^r u_i m_i=sum_{i=1}^r k_i c=c sum_{i=1}^r k_i$
and since $sum_{i=1}^r k_i in mathbb{Z}$ we got that
$c|sum_{i=1}^r u_i m_i$
Is that true please ?, thanks.
algebra-precalculus number-theory divisibility
algebra-precalculus number-theory divisibility
edited Jan 15 at 14:57
Servaes
25.6k33996
25.6k33996
asked Jan 15 at 14:45
DimaDima
736416
736416
3
$begingroup$
This is good for me
$endgroup$
– Thomas Lesgourgues
Jan 15 at 14:55
$begingroup$
@ThomasLesgourgues Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:11
add a comment |
3
$begingroup$
This is good for me
$endgroup$
– Thomas Lesgourgues
Jan 15 at 14:55
$begingroup$
@ThomasLesgourgues Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:11
3
3
$begingroup$
This is good for me
$endgroup$
– Thomas Lesgourgues
Jan 15 at 14:55
$begingroup$
This is good for me
$endgroup$
– Thomas Lesgourgues
Jan 15 at 14:55
$begingroup$
@ThomasLesgourgues Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:11
$begingroup$
@ThomasLesgourgues Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your proof is entirely correct. You might also use the fact that $cmid m_i$ to deduce that $m_i=n_ic$ and hence that $u_im_i=u_in_ic$, to reach the same conclusion.
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:32
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074524%2fif-c-m-i-prove-that-c-sum-i-1r-u-i-m-i-where-m-i-u-i-c-in-mathbbz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your proof is entirely correct. You might also use the fact that $cmid m_i$ to deduce that $m_i=n_ic$ and hence that $u_im_i=u_in_ic$, to reach the same conclusion.
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:32
add a comment |
$begingroup$
Your proof is entirely correct. You might also use the fact that $cmid m_i$ to deduce that $m_i=n_ic$ and hence that $u_im_i=u_in_ic$, to reach the same conclusion.
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:32
add a comment |
$begingroup$
Your proof is entirely correct. You might also use the fact that $cmid m_i$ to deduce that $m_i=n_ic$ and hence that $u_im_i=u_in_ic$, to reach the same conclusion.
$endgroup$
Your proof is entirely correct. You might also use the fact that $cmid m_i$ to deduce that $m_i=n_ic$ and hence that $u_im_i=u_in_ic$, to reach the same conclusion.
answered Jan 15 at 14:55
ServaesServaes
25.6k33996
25.6k33996
$begingroup$
Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:32
add a comment |
$begingroup$
Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:32
$begingroup$
Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:32
$begingroup$
Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:32
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074524%2fif-c-m-i-prove-that-c-sum-i-1r-u-i-m-i-where-m-i-u-i-c-in-mathbbz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
This is good for me
$endgroup$
– Thomas Lesgourgues
Jan 15 at 14:55
$begingroup$
@ThomasLesgourgues Thank you so much.
$endgroup$
– Dima
Jan 15 at 15:11