Proving $sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$












0












$begingroup$


Knowing



$$sin^2theta +cos^2theta equiv 1$$



how would I prove:
$$sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$$



Can I substitute the first equation to prove the second one? If so, how can I?



Please help.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Please read this tutorial on how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    Jan 15 at 13:47






  • 6




    $begingroup$
    The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
    $endgroup$
    – Blue
    Jan 15 at 13:47












  • $begingroup$
    See also math.stackexchange.com/questions/175143/…
    $endgroup$
    – lab bhattacharjee
    Jan 15 at 13:54
















0












$begingroup$


Knowing



$$sin^2theta +cos^2theta equiv 1$$



how would I prove:
$$sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$$



Can I substitute the first equation to prove the second one? If so, how can I?



Please help.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Please read this tutorial on how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    Jan 15 at 13:47






  • 6




    $begingroup$
    The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
    $endgroup$
    – Blue
    Jan 15 at 13:47












  • $begingroup$
    See also math.stackexchange.com/questions/175143/…
    $endgroup$
    – lab bhattacharjee
    Jan 15 at 13:54














0












0








0





$begingroup$


Knowing



$$sin^2theta +cos^2theta equiv 1$$



how would I prove:
$$sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$$



Can I substitute the first equation to prove the second one? If so, how can I?



Please help.










share|cite|improve this question











$endgroup$




Knowing



$$sin^2theta +cos^2theta equiv 1$$



how would I prove:
$$sin^2x cos^2y - cos^2x sin^2y ;equiv; cos^2y - cos^2x$$



Can I substitute the first equation to prove the second one? If so, how can I?



Please help.







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 13:46









Blue

48.5k870154




48.5k870154










asked Jan 15 at 13:42









user8469209user8469209

122




122












  • $begingroup$
    Please read this tutorial on how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    Jan 15 at 13:47






  • 6




    $begingroup$
    The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
    $endgroup$
    – Blue
    Jan 15 at 13:47












  • $begingroup$
    See also math.stackexchange.com/questions/175143/…
    $endgroup$
    – lab bhattacharjee
    Jan 15 at 13:54


















  • $begingroup$
    Please read this tutorial on how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    Jan 15 at 13:47






  • 6




    $begingroup$
    The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
    $endgroup$
    – Blue
    Jan 15 at 13:47












  • $begingroup$
    See also math.stackexchange.com/questions/175143/…
    $endgroup$
    – lab bhattacharjee
    Jan 15 at 13:54
















$begingroup$
Please read this tutorial on how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Jan 15 at 13:47




$begingroup$
Please read this tutorial on how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Jan 15 at 13:47




6




6




$begingroup$
The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
$endgroup$
– Blue
Jan 15 at 13:47






$begingroup$
The right-hand side of the target relation has only cosines in it. Can you use the Pythagorean identity to get rid of the sines on the left-hand side?
$endgroup$
– Blue
Jan 15 at 13:47














$begingroup$
See also math.stackexchange.com/questions/175143/…
$endgroup$
– lab bhattacharjee
Jan 15 at 13:54




$begingroup$
See also math.stackexchange.com/questions/175143/…
$endgroup$
– lab bhattacharjee
Jan 15 at 13:54










3 Answers
3






active

oldest

votes


















1












$begingroup$

Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    Yes you can substitute the first equation into the second one.



    $sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$



    Substitute to get,



    $begin{eqnarray}
    sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
    &=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
    &=& cos^2y - cos^2x
    end{eqnarray}$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      $sin^2x cos^2y - cos^2x sin^2y \
      = sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
      = (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
      = cos^2y - cos^2x$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074444%2fproving-sin2x-cos2y-cos2x-sin2y-equiv-cos2y-cos2x%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.






        share|cite|improve this answer











        $endgroup$


















          1












          $begingroup$

          Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.






          share|cite|improve this answer











          $endgroup$
















            1












            1








            1





            $begingroup$

            Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.






            share|cite|improve this answer











            $endgroup$



            Notice that the right hand side only has cosines in it. Try replacing all of the $sin^2(x)$ and $sin^2(y)$ with $1-cos^2(x)$ and $1-cos^2(y)$ respectively. If you simplify, you will see the right hand side.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 10 hours ago

























            answered Jan 15 at 14:40









            CuhrazateeCuhrazatee

            370110




            370110























                0












                $begingroup$

                Yes you can substitute the first equation into the second one.



                $sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$



                Substitute to get,



                $begin{eqnarray}
                sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
                &=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
                &=& cos^2y - cos^2x
                end{eqnarray}$






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  Yes you can substitute the first equation into the second one.



                  $sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$



                  Substitute to get,



                  $begin{eqnarray}
                  sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
                  &=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
                  &=& cos^2y - cos^2x
                  end{eqnarray}$






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    Yes you can substitute the first equation into the second one.



                    $sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$



                    Substitute to get,



                    $begin{eqnarray}
                    sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
                    &=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
                    &=& cos^2y - cos^2x
                    end{eqnarray}$






                    share|cite|improve this answer









                    $endgroup$



                    Yes you can substitute the first equation into the second one.



                    $sin^2theta +cos^2theta equiv 1 implies sin^2theta = 1-cos^2theta$



                    Substitute to get,



                    $begin{eqnarray}
                    sin^2x cos^2y - cos^2x sin^2y &=& ((1-cos^2(x)) (cos^2y)) - ((cos^2x) (1-cos^2(y)) \\
                    &=& cos^2y - ((cos^2y)(cos^2x)) - cos^2x + ((cos^2x)(cos^2y)) \\
                    &=& cos^2y - cos^2x
                    end{eqnarray}$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 15 at 14:54









                    E.NoleE.Nole

                    178114




                    178114























                        0












                        $begingroup$

                        $sin^2x cos^2y - cos^2x sin^2y \
                        = sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
                        = (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
                        = cos^2y - cos^2x$






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          $sin^2x cos^2y - cos^2x sin^2y \
                          = sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
                          = (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
                          = cos^2y - cos^2x$






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            $sin^2x cos^2y - cos^2x sin^2y \
                            = sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
                            = (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
                            = cos^2y - cos^2x$






                            share|cite|improve this answer









                            $endgroup$



                            $sin^2x cos^2y - cos^2x sin^2y \
                            = sin^2x cos^2y + (cos^2x cos^2y - cos^2x cos^2y) - cos^2x sin^2y \
                            = (sin^2x + cos^2x) cos^2y - cos^2x (cos^2y + sin^2y) \
                            = cos^2y - cos^2x$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 15 at 15:31









                            gandalf61gandalf61

                            8,741725




                            8,741725






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074444%2fproving-sin2x-cos2y-cos2x-sin2y-equiv-cos2y-cos2x%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                'app-layout' is not a known element: how to share Component with different Modules

                                android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                WPF add header to Image with URL pettitions [duplicate]