How to prove $binom{n}{4}=sum_{i=3}^{n-1} binom{i}{3}$?
$begingroup$
I was trying to find the number of diagonals of a nth polygon by deduction. Let $a_n$ be the number of the diagonals of thr nth polygon. Then I've got $$a_{n+1}=a_n+binom{n}{3}$$
$$a_n=sum_{i=3}^{n-1} binom{i}{3}$$
But we simply know that $a_n=binom{n}{4}$, where $a_n$ is the number of diagonals.
So we get $binom{n}{4}=sum_{i=3}^{n-2} binom{i}{3}$. My question is whether it is a trivial equation or it can be generalized like $binom{n}{k}=sum_{i=k-1}^{n-1} binom{i}{k-1}$. If it can be, how to prove that?
combinatorics
$endgroup$
add a comment |
$begingroup$
I was trying to find the number of diagonals of a nth polygon by deduction. Let $a_n$ be the number of the diagonals of thr nth polygon. Then I've got $$a_{n+1}=a_n+binom{n}{3}$$
$$a_n=sum_{i=3}^{n-1} binom{i}{3}$$
But we simply know that $a_n=binom{n}{4}$, where $a_n$ is the number of diagonals.
So we get $binom{n}{4}=sum_{i=3}^{n-2} binom{i}{3}$. My question is whether it is a trivial equation or it can be generalized like $binom{n}{k}=sum_{i=k-1}^{n-1} binom{i}{k-1}$. If it can be, how to prove that?
combinatorics
$endgroup$
$begingroup$
$$binom nk-binom{n-1}k=?$$ math.stackexchange.com/questions/1125923/…
$endgroup$
– lab bhattacharjee
Jan 15 at 14:03
4
$begingroup$
This is the Hockey-stick_identity: see en.wikipedia.org/wiki/Hockey-stick_identity
$endgroup$
– Robert Z
Jan 15 at 14:03
$begingroup$
Can be proved by induction.
$endgroup$
– gandalf61
Jan 15 at 14:11
add a comment |
$begingroup$
I was trying to find the number of diagonals of a nth polygon by deduction. Let $a_n$ be the number of the diagonals of thr nth polygon. Then I've got $$a_{n+1}=a_n+binom{n}{3}$$
$$a_n=sum_{i=3}^{n-1} binom{i}{3}$$
But we simply know that $a_n=binom{n}{4}$, where $a_n$ is the number of diagonals.
So we get $binom{n}{4}=sum_{i=3}^{n-2} binom{i}{3}$. My question is whether it is a trivial equation or it can be generalized like $binom{n}{k}=sum_{i=k-1}^{n-1} binom{i}{k-1}$. If it can be, how to prove that?
combinatorics
$endgroup$
I was trying to find the number of diagonals of a nth polygon by deduction. Let $a_n$ be the number of the diagonals of thr nth polygon. Then I've got $$a_{n+1}=a_n+binom{n}{3}$$
$$a_n=sum_{i=3}^{n-1} binom{i}{3}$$
But we simply know that $a_n=binom{n}{4}$, where $a_n$ is the number of diagonals.
So we get $binom{n}{4}=sum_{i=3}^{n-2} binom{i}{3}$. My question is whether it is a trivial equation or it can be generalized like $binom{n}{k}=sum_{i=k-1}^{n-1} binom{i}{k-1}$. If it can be, how to prove that?
combinatorics
combinatorics
asked Jan 15 at 14:00
Mahmud Nabil SnigdhoMahmud Nabil Snigdho
12
12
$begingroup$
$$binom nk-binom{n-1}k=?$$ math.stackexchange.com/questions/1125923/…
$endgroup$
– lab bhattacharjee
Jan 15 at 14:03
4
$begingroup$
This is the Hockey-stick_identity: see en.wikipedia.org/wiki/Hockey-stick_identity
$endgroup$
– Robert Z
Jan 15 at 14:03
$begingroup$
Can be proved by induction.
$endgroup$
– gandalf61
Jan 15 at 14:11
add a comment |
$begingroup$
$$binom nk-binom{n-1}k=?$$ math.stackexchange.com/questions/1125923/…
$endgroup$
– lab bhattacharjee
Jan 15 at 14:03
4
$begingroup$
This is the Hockey-stick_identity: see en.wikipedia.org/wiki/Hockey-stick_identity
$endgroup$
– Robert Z
Jan 15 at 14:03
$begingroup$
Can be proved by induction.
$endgroup$
– gandalf61
Jan 15 at 14:11
$begingroup$
$$binom nk-binom{n-1}k=?$$ math.stackexchange.com/questions/1125923/…
$endgroup$
– lab bhattacharjee
Jan 15 at 14:03
$begingroup$
$$binom nk-binom{n-1}k=?$$ math.stackexchange.com/questions/1125923/…
$endgroup$
– lab bhattacharjee
Jan 15 at 14:03
4
4
$begingroup$
This is the Hockey-stick_identity: see en.wikipedia.org/wiki/Hockey-stick_identity
$endgroup$
– Robert Z
Jan 15 at 14:03
$begingroup$
This is the Hockey-stick_identity: see en.wikipedia.org/wiki/Hockey-stick_identity
$endgroup$
– Robert Z
Jan 15 at 14:03
$begingroup$
Can be proved by induction.
$endgroup$
– gandalf61
Jan 15 at 14:11
$begingroup$
Can be proved by induction.
$endgroup$
– gandalf61
Jan 15 at 14:11
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You may transform the sum into a telescoping sum using the "binomial" fact
- $binom{i}{3} = binom{i+1}{4} - binom{i}{4}$
Hence,
begin{eqnarray*} sum_{i=3}^{n-1} binom{i}{3}
& = & sum_{i=3}^{n-1} left(binom{i+1}{4} - binom{i}{4} right)\
& stackrel{binom{3}{4} = 0}{=} & binom{n-1+1}{4} - 0\
& = & binom{n}{4}\
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
We have to choose four numbers from $[n]$. Assume the largest chosen number is $i+1in[4..n]$. The other three numbers then are arbitrary three numbers in $[i]$.
$endgroup$
add a comment |
$begingroup$
Let $k=3$ so that $4=k+1$. The binomial coefficient $binom n{k+1}$ counts the $k+1$-element subsets $S$ of the $n$-element set ${0,1,ldots,n-1}$. Let $S$ be such a set and $i=max(S)$. Then $kleq i<n$, and $S=S'cup{i}$ where $S'$ can be any $k$-element subset of the $i$-element set ${0,1,ldots,i-1}$. So
$$binom n{k+1}=sum_{i=k}^{n-1}binom ik.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074465%2fhow-to-prove-binomn4-sum-i-3n-1-binomi3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You may transform the sum into a telescoping sum using the "binomial" fact
- $binom{i}{3} = binom{i+1}{4} - binom{i}{4}$
Hence,
begin{eqnarray*} sum_{i=3}^{n-1} binom{i}{3}
& = & sum_{i=3}^{n-1} left(binom{i+1}{4} - binom{i}{4} right)\
& stackrel{binom{3}{4} = 0}{=} & binom{n-1+1}{4} - 0\
& = & binom{n}{4}\
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
You may transform the sum into a telescoping sum using the "binomial" fact
- $binom{i}{3} = binom{i+1}{4} - binom{i}{4}$
Hence,
begin{eqnarray*} sum_{i=3}^{n-1} binom{i}{3}
& = & sum_{i=3}^{n-1} left(binom{i+1}{4} - binom{i}{4} right)\
& stackrel{binom{3}{4} = 0}{=} & binom{n-1+1}{4} - 0\
& = & binom{n}{4}\
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
You may transform the sum into a telescoping sum using the "binomial" fact
- $binom{i}{3} = binom{i+1}{4} - binom{i}{4}$
Hence,
begin{eqnarray*} sum_{i=3}^{n-1} binom{i}{3}
& = & sum_{i=3}^{n-1} left(binom{i+1}{4} - binom{i}{4} right)\
& stackrel{binom{3}{4} = 0}{=} & binom{n-1+1}{4} - 0\
& = & binom{n}{4}\
end{eqnarray*}
$endgroup$
You may transform the sum into a telescoping sum using the "binomial" fact
- $binom{i}{3} = binom{i+1}{4} - binom{i}{4}$
Hence,
begin{eqnarray*} sum_{i=3}^{n-1} binom{i}{3}
& = & sum_{i=3}^{n-1} left(binom{i+1}{4} - binom{i}{4} right)\
& stackrel{binom{3}{4} = 0}{=} & binom{n-1+1}{4} - 0\
& = & binom{n}{4}\
end{eqnarray*}
answered Jan 15 at 14:15
trancelocationtrancelocation
11.9k1825
11.9k1825
add a comment |
add a comment |
$begingroup$
We have to choose four numbers from $[n]$. Assume the largest chosen number is $i+1in[4..n]$. The other three numbers then are arbitrary three numbers in $[i]$.
$endgroup$
add a comment |
$begingroup$
We have to choose four numbers from $[n]$. Assume the largest chosen number is $i+1in[4..n]$. The other three numbers then are arbitrary three numbers in $[i]$.
$endgroup$
add a comment |
$begingroup$
We have to choose four numbers from $[n]$. Assume the largest chosen number is $i+1in[4..n]$. The other three numbers then are arbitrary three numbers in $[i]$.
$endgroup$
We have to choose four numbers from $[n]$. Assume the largest chosen number is $i+1in[4..n]$. The other three numbers then are arbitrary three numbers in $[i]$.
answered Jan 15 at 14:33
Christian BlatterChristian Blatter
174k8115327
174k8115327
add a comment |
add a comment |
$begingroup$
Let $k=3$ so that $4=k+1$. The binomial coefficient $binom n{k+1}$ counts the $k+1$-element subsets $S$ of the $n$-element set ${0,1,ldots,n-1}$. Let $S$ be such a set and $i=max(S)$. Then $kleq i<n$, and $S=S'cup{i}$ where $S'$ can be any $k$-element subset of the $i$-element set ${0,1,ldots,i-1}$. So
$$binom n{k+1}=sum_{i=k}^{n-1}binom ik.$$
$endgroup$
add a comment |
$begingroup$
Let $k=3$ so that $4=k+1$. The binomial coefficient $binom n{k+1}$ counts the $k+1$-element subsets $S$ of the $n$-element set ${0,1,ldots,n-1}$. Let $S$ be such a set and $i=max(S)$. Then $kleq i<n$, and $S=S'cup{i}$ where $S'$ can be any $k$-element subset of the $i$-element set ${0,1,ldots,i-1}$. So
$$binom n{k+1}=sum_{i=k}^{n-1}binom ik.$$
$endgroup$
add a comment |
$begingroup$
Let $k=3$ so that $4=k+1$. The binomial coefficient $binom n{k+1}$ counts the $k+1$-element subsets $S$ of the $n$-element set ${0,1,ldots,n-1}$. Let $S$ be such a set and $i=max(S)$. Then $kleq i<n$, and $S=S'cup{i}$ where $S'$ can be any $k$-element subset of the $i$-element set ${0,1,ldots,i-1}$. So
$$binom n{k+1}=sum_{i=k}^{n-1}binom ik.$$
$endgroup$
Let $k=3$ so that $4=k+1$. The binomial coefficient $binom n{k+1}$ counts the $k+1$-element subsets $S$ of the $n$-element set ${0,1,ldots,n-1}$. Let $S$ be such a set and $i=max(S)$. Then $kleq i<n$, and $S=S'cup{i}$ where $S'$ can be any $k$-element subset of the $i$-element set ${0,1,ldots,i-1}$. So
$$binom n{k+1}=sum_{i=k}^{n-1}binom ik.$$
answered Jan 15 at 14:34
Marc van LeeuwenMarc van Leeuwen
87.4k5109224
87.4k5109224
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074465%2fhow-to-prove-binomn4-sum-i-3n-1-binomi3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$$binom nk-binom{n-1}k=?$$ math.stackexchange.com/questions/1125923/…
$endgroup$
– lab bhattacharjee
Jan 15 at 14:03
4
$begingroup$
This is the Hockey-stick_identity: see en.wikipedia.org/wiki/Hockey-stick_identity
$endgroup$
– Robert Z
Jan 15 at 14:03
$begingroup$
Can be proved by induction.
$endgroup$
– gandalf61
Jan 15 at 14:11