Evaluating $lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$












0












$begingroup$


$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$$
I think,it would be useful to start with simplifying the first term in the numerator as $(sqrt{x+x^3}-x)=x^{{3over2}}$ and leaving the denominator untouched.Then,i have to just work on the remaining term,but I can't figure out a way to not have $ln1=0$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
    $endgroup$
    – coreyman317
    Jan 14 at 16:40












  • $begingroup$
    As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
    $endgroup$
    – Turan Nəsibli
    Jan 14 at 16:44










  • $begingroup$
    While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
    $endgroup$
    – JimB
    Jan 14 at 17:17










  • $begingroup$
    Just because they are asymptotically equivalent does not mean they are simply equal.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 at 17:18










  • $begingroup$
    @JimB I know the answer as well,thanks anyway.
    $endgroup$
    – Turan Nəsibli
    Jan 14 at 17:18
















0












$begingroup$


$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$$
I think,it would be useful to start with simplifying the first term in the numerator as $(sqrt{x+x^3}-x)=x^{{3over2}}$ and leaving the denominator untouched.Then,i have to just work on the remaining term,but I can't figure out a way to not have $ln1=0$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
    $endgroup$
    – coreyman317
    Jan 14 at 16:40












  • $begingroup$
    As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
    $endgroup$
    – Turan Nəsibli
    Jan 14 at 16:44










  • $begingroup$
    While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
    $endgroup$
    – JimB
    Jan 14 at 17:17










  • $begingroup$
    Just because they are asymptotically equivalent does not mean they are simply equal.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 at 17:18










  • $begingroup$
    @JimB I know the answer as well,thanks anyway.
    $endgroup$
    – Turan Nəsibli
    Jan 14 at 17:18














0












0








0





$begingroup$


$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$$
I think,it would be useful to start with simplifying the first term in the numerator as $(sqrt{x+x^3}-x)=x^{{3over2}}$ and leaving the denominator untouched.Then,i have to just work on the remaining term,but I can't figure out a way to not have $ln1=0$










share|cite|improve this question











$endgroup$




$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$$
I think,it would be useful to start with simplifying the first term in the numerator as $(sqrt{x+x^3}-x)=x^{{3over2}}$ and leaving the denominator untouched.Then,i have to just work on the remaining term,but I can't figure out a way to not have $ln1=0$







calculus limits radicals limits-without-lhopital






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 14 at 18:56









Michael Rozenberg

103k1891196




103k1891196










asked Jan 14 at 16:36









Turan NəsibliTuran Nəsibli

776




776












  • $begingroup$
    Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
    $endgroup$
    – coreyman317
    Jan 14 at 16:40












  • $begingroup$
    As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
    $endgroup$
    – Turan Nəsibli
    Jan 14 at 16:44










  • $begingroup$
    While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
    $endgroup$
    – JimB
    Jan 14 at 17:17










  • $begingroup$
    Just because they are asymptotically equivalent does not mean they are simply equal.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 at 17:18










  • $begingroup$
    @JimB I know the answer as well,thanks anyway.
    $endgroup$
    – Turan Nəsibli
    Jan 14 at 17:18


















  • $begingroup$
    Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
    $endgroup$
    – coreyman317
    Jan 14 at 16:40












  • $begingroup$
    As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
    $endgroup$
    – Turan Nəsibli
    Jan 14 at 16:44










  • $begingroup$
    While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
    $endgroup$
    – JimB
    Jan 14 at 17:17










  • $begingroup$
    Just because they are asymptotically equivalent does not mean they are simply equal.
    $endgroup$
    – Simply Beautiful Art
    Jan 14 at 17:18










  • $begingroup$
    @JimB I know the answer as well,thanks anyway.
    $endgroup$
    – Turan Nəsibli
    Jan 14 at 17:18
















$begingroup$
Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
$endgroup$
– coreyman317
Jan 14 at 16:40






$begingroup$
Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
$endgroup$
– coreyman317
Jan 14 at 16:40














$begingroup$
As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
$endgroup$
– Turan Nəsibli
Jan 14 at 16:44




$begingroup$
As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
$endgroup$
– Turan Nəsibli
Jan 14 at 16:44












$begingroup$
While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
$endgroup$
– JimB
Jan 14 at 17:17




$begingroup$
While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
$endgroup$
– JimB
Jan 14 at 17:17












$begingroup$
Just because they are asymptotically equivalent does not mean they are simply equal.
$endgroup$
– Simply Beautiful Art
Jan 14 at 17:18




$begingroup$
Just because they are asymptotically equivalent does not mean they are simply equal.
$endgroup$
– Simply Beautiful Art
Jan 14 at 17:18












$begingroup$
@JimB I know the answer as well,thanks anyway.
$endgroup$
– Turan Nəsibli
Jan 14 at 17:18




$begingroup$
@JimB I know the answer as well,thanks anyway.
$endgroup$
– Turan Nəsibli
Jan 14 at 17:18










2 Answers
2






active

oldest

votes


















2












$begingroup$

$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
$$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
$$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
$$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$



    Set $x=1/h^2,hto0^+$



    $$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$



    $$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$



    $2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$



    $$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073418%2fevaluating-lim-x-to-infty-frac-sqrtxx3-x-ln-frac-sqrt4x12-sqr%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      $$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
      $$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
      $$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
      $$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        $$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
        $$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
        $$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
        $$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          $$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
          $$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
          $$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
          $$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$






          share|cite|improve this answer









          $endgroup$



          $$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
          $$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
          $$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
          $$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 14 at 18:54









          Michael RozenbergMichael Rozenberg

          103k1891196




          103k1891196























              0












              $begingroup$

              $$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$



              Set $x=1/h^2,hto0^+$



              $$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$



              $$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$



              $2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$



              $$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$



                Set $x=1/h^2,hto0^+$



                $$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$



                $$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$



                $2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$



                $$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$



                  Set $x=1/h^2,hto0^+$



                  $$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$



                  $$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$



                  $2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$



                  $$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$






                  share|cite|improve this answer









                  $endgroup$



                  $$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$



                  Set $x=1/h^2,hto0^+$



                  $$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$



                  $$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$



                  $2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$



                  $$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 17 at 14:52









                  lab bhattacharjeelab bhattacharjee

                  225k15157275




                  225k15157275






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073418%2fevaluating-lim-x-to-infty-frac-sqrtxx3-x-ln-frac-sqrt4x12-sqr%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                      How to fix TextFormField cause rebuild widget in Flutter