Evaluating $lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$
$begingroup$
$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$$
I think,it would be useful to start with simplifying the first term in the numerator as $(sqrt{x+x^3}-x)=x^{{3over2}}$ and leaving the denominator untouched.Then,i have to just work on the remaining term,but I can't figure out a way to not have $ln1=0$
calculus limits radicals limits-without-lhopital
$endgroup$
|
show 6 more comments
$begingroup$
$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$$
I think,it would be useful to start with simplifying the first term in the numerator as $(sqrt{x+x^3}-x)=x^{{3over2}}$ and leaving the denominator untouched.Then,i have to just work on the remaining term,but I can't figure out a way to not have $ln1=0$
calculus limits radicals limits-without-lhopital
$endgroup$
$begingroup$
Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
$endgroup$
– coreyman317
Jan 14 at 16:40
$begingroup$
As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
$endgroup$
– Turan Nəsibli
Jan 14 at 16:44
$begingroup$
While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
$endgroup$
– JimB
Jan 14 at 17:17
$begingroup$
Just because they are asymptotically equivalent does not mean they are simply equal.
$endgroup$
– Simply Beautiful Art
Jan 14 at 17:18
$begingroup$
@JimB I know the answer as well,thanks anyway.
$endgroup$
– Turan Nəsibli
Jan 14 at 17:18
|
show 6 more comments
$begingroup$
$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$$
I think,it would be useful to start with simplifying the first term in the numerator as $(sqrt{x+x^3}-x)=x^{{3over2}}$ and leaving the denominator untouched.Then,i have to just work on the remaining term,but I can't figure out a way to not have $ln1=0$
calculus limits radicals limits-without-lhopital
$endgroup$
$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}$$
I think,it would be useful to start with simplifying the first term in the numerator as $(sqrt{x+x^3}-x)=x^{{3over2}}$ and leaving the denominator untouched.Then,i have to just work on the remaining term,but I can't figure out a way to not have $ln1=0$
calculus limits radicals limits-without-lhopital
calculus limits radicals limits-without-lhopital
edited Jan 14 at 18:56
Michael Rozenberg
103k1891196
103k1891196
asked Jan 14 at 16:36
Turan NəsibliTuran Nəsibli
776
776
$begingroup$
Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
$endgroup$
– coreyman317
Jan 14 at 16:40
$begingroup$
As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
$endgroup$
– Turan Nəsibli
Jan 14 at 16:44
$begingroup$
While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
$endgroup$
– JimB
Jan 14 at 17:17
$begingroup$
Just because they are asymptotically equivalent does not mean they are simply equal.
$endgroup$
– Simply Beautiful Art
Jan 14 at 17:18
$begingroup$
@JimB I know the answer as well,thanks anyway.
$endgroup$
– Turan Nəsibli
Jan 14 at 17:18
|
show 6 more comments
$begingroup$
Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
$endgroup$
– coreyman317
Jan 14 at 16:40
$begingroup$
As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
$endgroup$
– Turan Nəsibli
Jan 14 at 16:44
$begingroup$
While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
$endgroup$
– JimB
Jan 14 at 17:17
$begingroup$
Just because they are asymptotically equivalent does not mean they are simply equal.
$endgroup$
– Simply Beautiful Art
Jan 14 at 17:18
$begingroup$
@JimB I know the answer as well,thanks anyway.
$endgroup$
– Turan Nəsibli
Jan 14 at 17:18
$begingroup$
Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
$endgroup$
– coreyman317
Jan 14 at 16:40
$begingroup$
Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
$endgroup$
– coreyman317
Jan 14 at 16:40
$begingroup$
As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
$endgroup$
– Turan Nəsibli
Jan 14 at 16:44
$begingroup$
As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
$endgroup$
– Turan Nəsibli
Jan 14 at 16:44
$begingroup$
While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
$endgroup$
– JimB
Jan 14 at 17:17
$begingroup$
While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
$endgroup$
– JimB
Jan 14 at 17:17
$begingroup$
Just because they are asymptotically equivalent does not mean they are simply equal.
$endgroup$
– Simply Beautiful Art
Jan 14 at 17:18
$begingroup$
Just because they are asymptotically equivalent does not mean they are simply equal.
$endgroup$
– Simply Beautiful Art
Jan 14 at 17:18
$begingroup$
@JimB I know the answer as well,thanks anyway.
$endgroup$
– Turan Nəsibli
Jan 14 at 17:18
$begingroup$
@JimB I know the answer as well,thanks anyway.
$endgroup$
– Turan Nəsibli
Jan 14 at 17:18
|
show 6 more comments
2 Answers
2
active
oldest
votes
$begingroup$
$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
$$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
$$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
$$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$
$endgroup$
add a comment |
$begingroup$
$$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$
Set $x=1/h^2,hto0^+$
$$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$
$$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$
$2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$
$$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073418%2fevaluating-lim-x-to-infty-frac-sqrtxx3-x-ln-frac-sqrt4x12-sqr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
$$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
$$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
$$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
$$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
$$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
$$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
$$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
$$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
$$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$
$endgroup$
$$lim_{xto+infty}frac{(sqrt{x+x^3}-x)lnfrac{sqrt{4x+1}}{2sqrt x +3}}{xarctan x}=lim_{xto+infty}frac{x^3lnleft(frac{sqrt{4x+1}}{2sqrt x +3}-1+1right)}{(sqrt{x+x^3}-x)xarctan x}=$$
$$=lim_{xto+infty}frac{x^2left(frac{sqrt{4x+1}}{2sqrt x +3}-1right)}{(sqrt{x+x^3}-x)arctan x}=lim_{xto+infty}frac{x^2(4x+1-4x-12sqrt{x}-9)}{(2sqrt x +3)(sqrt{4x+1}+2sqrt x +3)(sqrt{x+x^3}-x)arctan x}=$$
$$=lim_{xto+infty}frac{-12-frac{8}{sqrt{x}}}{left(2 +frac{3}{sqrt{x}}right)left(sqrt{4+frac{1}{x}}+2 +frac{3}{sqrt{x}}right)left(sqrt{frac{1}{x^2}+1}-frac{1}{sqrt{x}}right)arctan x}=$$
$$=frac{-12}{2cdot4cdot1cdotfrac{pi}{2}}=-frac{3}{pi}.$$
answered Jan 14 at 18:54
Michael RozenbergMichael Rozenberg
103k1891196
103k1891196
add a comment |
add a comment |
$begingroup$
$$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$
Set $x=1/h^2,hto0^+$
$$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$
$$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$
$2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$
$$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$
$endgroup$
add a comment |
$begingroup$
$$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$
Set $x=1/h^2,hto0^+$
$$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$
$$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$
$2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$
$$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$
$endgroup$
add a comment |
$begingroup$
$$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$
Set $x=1/h^2,hto0^+$
$$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$
$$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$
$2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$
$$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$
$endgroup$
$$I=lim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}{xarctan x}=dfrac2pilim_{xto+infty}frac{(sqrt{x+x^3}-x)ln(frac{sqrt{4x+1}}{2sqrt x +3})}x$$
Set $x=1/h^2,hto0^+$
$$sqrt{x+x^3}-x=sqrt{dfrac1{h^2}+dfrac1{h^6}}-dfrac{1}{h^2}=dfrac{sqrt{1+h^4}-h}{h^3}text{ and }dfrac{sqrt{4x+1}}{2sqrt{x}+3}= dfrac{sqrt{4+h^2}}{2+3h} $$
$$dfrac{pi I}2=lim_{hto0^+}dfrac{h^2(sqrt{1+h^4}-h)}{h^3}lnleft(dfrac{sqrt{4+h^2}}{2+3h}right)$$
$2lnleft(dfrac{sqrt{4+h^2}}{2+3 h}right)=lndfrac{4+h^2}{(2+3h)^2}=lnleft(1-dfrac{12h}{(2+3h)^2}right)$
$$pi I=-lim_{hto0^+}(sqrt{1+h^4}-h)cdotlim_{hto0^+}left(lim_{hto0^+}dfrac{lnleft(1-dfrac{12h}{(2+3h)^2}right)}{-dfrac{12h}{(2+3h)^2}}right)cdotlim_{hto0^+}dfrac{dfrac{12h}{(2+3h)^2}}h=-1cdot1cdotdfrac{12}4$$
answered Jan 17 at 14:52
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073418%2fevaluating-lim-x-to-infty-frac-sqrtxx3-x-ln-frac-sqrt4x12-sqr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Note: $sqrt{x+x^3}-xneq x^{frac{3}{2}}$
$endgroup$
– coreyman317
Jan 14 at 16:40
$begingroup$
As $xto+infty$ $x$ is negligible with respect to $x^3$ and it becomes $sqrt {x^3}=x^{{3over2}}$ and then isn't $x$ negligible with respect to $x^{{3over2}}$?
$endgroup$
– Turan Nəsibli
Jan 14 at 16:44
$begingroup$
While I'm sure you need the steps to get to the answer, it sometimes helps if one knows the answer which in this case is $-3/pi$.
$endgroup$
– JimB
Jan 14 at 17:17
$begingroup$
Just because they are asymptotically equivalent does not mean they are simply equal.
$endgroup$
– Simply Beautiful Art
Jan 14 at 17:18
$begingroup$
@JimB I know the answer as well,thanks anyway.
$endgroup$
– Turan Nəsibli
Jan 14 at 17:18