Is it possible to compute the eigenvalues and eigenvectors if I know the svd?












0












$begingroup$


I have a matrix $A$



A =

2.00000 3.00000 1.00000 0.50000 4.00000
4.00000 5.00000 7.00000 0.10000 1.00000
5.00000 3.00000 6.00000 19.20000 9.00000
1.00000 4.00000 1.00000 4.00000 7.00000
3.00000 1.00000 6.00000 2.00000 6.00000


I did the SVD on matrix $A$.



[U,S,V] = svd(A)

U =

-0.149403 -0.278046 -0.422317 -0.209000 0.823612
-0.198548 -0.731899 0.473681 -0.422812 -0.147509
-0.872587 0.409042 0.244648 -0.055987 0.091043
-0.304238 -0.128976 -0.728923 -0.262419 -0.539085
-0.290325 -0.450625 -0.078065 0.839971 -0.031671

S =

Diagonal Matrix

25.63602 0 0 0 0
0 10.08558 0 0 0
0 0 6.01867 0 0
0 0 0 3.71319 0
0 0 0 0 0.98157

V =

-0.2586652 -0.2894557 0.2176915 -0.0354640 0.8947963
-0.2171159 -0.4197117 -0.1924603 -0.8399028 -0.1850004
-0.3440842 -0.5730769 0.5257015 0.3427795 -0.3991605
-0.7273295 0.6171432 0.2428507 -0.1592856 -0.0760113
-0.4884167 -0.1754271 -0.7617289 0.3878607 0.0027517


But then when I checked the eigenvalues and eigenvectors, they where not the same.



[v, e] = eig(A)
v =

-0.18903 + 0.00000i 0.15906 - 0.21827i 0.15906 + 0.21827i -0.87710 + 0.00000i -0.20055 + 0.00000i
-0.39291 + 0.00000i 0.25894 + 0.33885i 0.25894 - 0.33885i 0.15307 + 0.00000i -0.83881 + 0.00000i
-0.74945 + 0.00000i -0.69885 + 0.00000i -0.69885 - 0.00000i 0.42831 + 0.00000i 0.12425 + 0.00000i
-0.30382 + 0.00000i 0.12855 - 0.36818i 0.12855 + 0.36818i 0.13432 + 0.00000i -0.05592 + 0.00000i
-0.39484 + 0.00000i 0.17079 + 0.27486i 0.17079 - 0.27486i -0.07597 + 0.00000i 0.48746 + 0.00000i

e =

Diagonal Matrix

21.3589 + 0.0000i 0 0 0 0
0 -1.9810 + 6.6826i 0 0 0
0 0 -1.9810 - 6.6826i 0 0
0 0 0 1.2580 + 0.0000i 0
0 0 0 0 4.3450 + 0.0000i


As you can see, the matrix $A$ have complex eigenvalues, but not in the $S$ matrix of SVD. Why? Is it possible for me to compute the eigenvalues and eigenvectors from svd if I know $A,U,S,V$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
    $endgroup$
    – Robert Israel
    Jan 14 at 20:30










  • $begingroup$
    @RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
    $endgroup$
    – Daniel Mårtensson
    Jan 14 at 20:38










  • $begingroup$
    For example, the eigenvalues are not determined by the singular values.
    $endgroup$
    – Robert Israel
    Jan 14 at 20:40










  • $begingroup$
    See Wikipedia - SVD and spectral decomposition
    $endgroup$
    – mathcounterexamples.net
    Jan 14 at 20:40






  • 2




    $begingroup$
    The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
    $endgroup$
    – mathcounterexamples.net
    Jan 14 at 21:14


















0












$begingroup$


I have a matrix $A$



A =

2.00000 3.00000 1.00000 0.50000 4.00000
4.00000 5.00000 7.00000 0.10000 1.00000
5.00000 3.00000 6.00000 19.20000 9.00000
1.00000 4.00000 1.00000 4.00000 7.00000
3.00000 1.00000 6.00000 2.00000 6.00000


I did the SVD on matrix $A$.



[U,S,V] = svd(A)

U =

-0.149403 -0.278046 -0.422317 -0.209000 0.823612
-0.198548 -0.731899 0.473681 -0.422812 -0.147509
-0.872587 0.409042 0.244648 -0.055987 0.091043
-0.304238 -0.128976 -0.728923 -0.262419 -0.539085
-0.290325 -0.450625 -0.078065 0.839971 -0.031671

S =

Diagonal Matrix

25.63602 0 0 0 0
0 10.08558 0 0 0
0 0 6.01867 0 0
0 0 0 3.71319 0
0 0 0 0 0.98157

V =

-0.2586652 -0.2894557 0.2176915 -0.0354640 0.8947963
-0.2171159 -0.4197117 -0.1924603 -0.8399028 -0.1850004
-0.3440842 -0.5730769 0.5257015 0.3427795 -0.3991605
-0.7273295 0.6171432 0.2428507 -0.1592856 -0.0760113
-0.4884167 -0.1754271 -0.7617289 0.3878607 0.0027517


But then when I checked the eigenvalues and eigenvectors, they where not the same.



[v, e] = eig(A)
v =

-0.18903 + 0.00000i 0.15906 - 0.21827i 0.15906 + 0.21827i -0.87710 + 0.00000i -0.20055 + 0.00000i
-0.39291 + 0.00000i 0.25894 + 0.33885i 0.25894 - 0.33885i 0.15307 + 0.00000i -0.83881 + 0.00000i
-0.74945 + 0.00000i -0.69885 + 0.00000i -0.69885 - 0.00000i 0.42831 + 0.00000i 0.12425 + 0.00000i
-0.30382 + 0.00000i 0.12855 - 0.36818i 0.12855 + 0.36818i 0.13432 + 0.00000i -0.05592 + 0.00000i
-0.39484 + 0.00000i 0.17079 + 0.27486i 0.17079 - 0.27486i -0.07597 + 0.00000i 0.48746 + 0.00000i

e =

Diagonal Matrix

21.3589 + 0.0000i 0 0 0 0
0 -1.9810 + 6.6826i 0 0 0
0 0 -1.9810 - 6.6826i 0 0
0 0 0 1.2580 + 0.0000i 0
0 0 0 0 4.3450 + 0.0000i


As you can see, the matrix $A$ have complex eigenvalues, but not in the $S$ matrix of SVD. Why? Is it possible for me to compute the eigenvalues and eigenvectors from svd if I know $A,U,S,V$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
    $endgroup$
    – Robert Israel
    Jan 14 at 20:30










  • $begingroup$
    @RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
    $endgroup$
    – Daniel Mårtensson
    Jan 14 at 20:38










  • $begingroup$
    For example, the eigenvalues are not determined by the singular values.
    $endgroup$
    – Robert Israel
    Jan 14 at 20:40










  • $begingroup$
    See Wikipedia - SVD and spectral decomposition
    $endgroup$
    – mathcounterexamples.net
    Jan 14 at 20:40






  • 2




    $begingroup$
    The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
    $endgroup$
    – mathcounterexamples.net
    Jan 14 at 21:14
















0












0








0





$begingroup$


I have a matrix $A$



A =

2.00000 3.00000 1.00000 0.50000 4.00000
4.00000 5.00000 7.00000 0.10000 1.00000
5.00000 3.00000 6.00000 19.20000 9.00000
1.00000 4.00000 1.00000 4.00000 7.00000
3.00000 1.00000 6.00000 2.00000 6.00000


I did the SVD on matrix $A$.



[U,S,V] = svd(A)

U =

-0.149403 -0.278046 -0.422317 -0.209000 0.823612
-0.198548 -0.731899 0.473681 -0.422812 -0.147509
-0.872587 0.409042 0.244648 -0.055987 0.091043
-0.304238 -0.128976 -0.728923 -0.262419 -0.539085
-0.290325 -0.450625 -0.078065 0.839971 -0.031671

S =

Diagonal Matrix

25.63602 0 0 0 0
0 10.08558 0 0 0
0 0 6.01867 0 0
0 0 0 3.71319 0
0 0 0 0 0.98157

V =

-0.2586652 -0.2894557 0.2176915 -0.0354640 0.8947963
-0.2171159 -0.4197117 -0.1924603 -0.8399028 -0.1850004
-0.3440842 -0.5730769 0.5257015 0.3427795 -0.3991605
-0.7273295 0.6171432 0.2428507 -0.1592856 -0.0760113
-0.4884167 -0.1754271 -0.7617289 0.3878607 0.0027517


But then when I checked the eigenvalues and eigenvectors, they where not the same.



[v, e] = eig(A)
v =

-0.18903 + 0.00000i 0.15906 - 0.21827i 0.15906 + 0.21827i -0.87710 + 0.00000i -0.20055 + 0.00000i
-0.39291 + 0.00000i 0.25894 + 0.33885i 0.25894 - 0.33885i 0.15307 + 0.00000i -0.83881 + 0.00000i
-0.74945 + 0.00000i -0.69885 + 0.00000i -0.69885 - 0.00000i 0.42831 + 0.00000i 0.12425 + 0.00000i
-0.30382 + 0.00000i 0.12855 - 0.36818i 0.12855 + 0.36818i 0.13432 + 0.00000i -0.05592 + 0.00000i
-0.39484 + 0.00000i 0.17079 + 0.27486i 0.17079 - 0.27486i -0.07597 + 0.00000i 0.48746 + 0.00000i

e =

Diagonal Matrix

21.3589 + 0.0000i 0 0 0 0
0 -1.9810 + 6.6826i 0 0 0
0 0 -1.9810 - 6.6826i 0 0
0 0 0 1.2580 + 0.0000i 0
0 0 0 0 4.3450 + 0.0000i


As you can see, the matrix $A$ have complex eigenvalues, but not in the $S$ matrix of SVD. Why? Is it possible for me to compute the eigenvalues and eigenvectors from svd if I know $A,U,S,V$?










share|cite|improve this question









$endgroup$




I have a matrix $A$



A =

2.00000 3.00000 1.00000 0.50000 4.00000
4.00000 5.00000 7.00000 0.10000 1.00000
5.00000 3.00000 6.00000 19.20000 9.00000
1.00000 4.00000 1.00000 4.00000 7.00000
3.00000 1.00000 6.00000 2.00000 6.00000


I did the SVD on matrix $A$.



[U,S,V] = svd(A)

U =

-0.149403 -0.278046 -0.422317 -0.209000 0.823612
-0.198548 -0.731899 0.473681 -0.422812 -0.147509
-0.872587 0.409042 0.244648 -0.055987 0.091043
-0.304238 -0.128976 -0.728923 -0.262419 -0.539085
-0.290325 -0.450625 -0.078065 0.839971 -0.031671

S =

Diagonal Matrix

25.63602 0 0 0 0
0 10.08558 0 0 0
0 0 6.01867 0 0
0 0 0 3.71319 0
0 0 0 0 0.98157

V =

-0.2586652 -0.2894557 0.2176915 -0.0354640 0.8947963
-0.2171159 -0.4197117 -0.1924603 -0.8399028 -0.1850004
-0.3440842 -0.5730769 0.5257015 0.3427795 -0.3991605
-0.7273295 0.6171432 0.2428507 -0.1592856 -0.0760113
-0.4884167 -0.1754271 -0.7617289 0.3878607 0.0027517


But then when I checked the eigenvalues and eigenvectors, they where not the same.



[v, e] = eig(A)
v =

-0.18903 + 0.00000i 0.15906 - 0.21827i 0.15906 + 0.21827i -0.87710 + 0.00000i -0.20055 + 0.00000i
-0.39291 + 0.00000i 0.25894 + 0.33885i 0.25894 - 0.33885i 0.15307 + 0.00000i -0.83881 + 0.00000i
-0.74945 + 0.00000i -0.69885 + 0.00000i -0.69885 - 0.00000i 0.42831 + 0.00000i 0.12425 + 0.00000i
-0.30382 + 0.00000i 0.12855 - 0.36818i 0.12855 + 0.36818i 0.13432 + 0.00000i -0.05592 + 0.00000i
-0.39484 + 0.00000i 0.17079 + 0.27486i 0.17079 - 0.27486i -0.07597 + 0.00000i 0.48746 + 0.00000i

e =

Diagonal Matrix

21.3589 + 0.0000i 0 0 0 0
0 -1.9810 + 6.6826i 0 0 0
0 0 -1.9810 - 6.6826i 0 0
0 0 0 1.2580 + 0.0000i 0
0 0 0 0 4.3450 + 0.0000i


As you can see, the matrix $A$ have complex eigenvalues, but not in the $S$ matrix of SVD. Why? Is it possible for me to compute the eigenvalues and eigenvectors from svd if I know $A,U,S,V$?







matrices eigenvalues-eigenvectors svd singularvalues






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 14 at 20:21









Daniel MårtenssonDaniel Mårtensson

942416




942416












  • $begingroup$
    In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
    $endgroup$
    – Robert Israel
    Jan 14 at 20:30










  • $begingroup$
    @RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
    $endgroup$
    – Daniel Mårtensson
    Jan 14 at 20:38










  • $begingroup$
    For example, the eigenvalues are not determined by the singular values.
    $endgroup$
    – Robert Israel
    Jan 14 at 20:40










  • $begingroup$
    See Wikipedia - SVD and spectral decomposition
    $endgroup$
    – mathcounterexamples.net
    Jan 14 at 20:40






  • 2




    $begingroup$
    The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
    $endgroup$
    – mathcounterexamples.net
    Jan 14 at 21:14




















  • $begingroup$
    In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
    $endgroup$
    – Robert Israel
    Jan 14 at 20:30










  • $begingroup$
    @RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
    $endgroup$
    – Daniel Mårtensson
    Jan 14 at 20:38










  • $begingroup$
    For example, the eigenvalues are not determined by the singular values.
    $endgroup$
    – Robert Israel
    Jan 14 at 20:40










  • $begingroup$
    See Wikipedia - SVD and spectral decomposition
    $endgroup$
    – mathcounterexamples.net
    Jan 14 at 20:40






  • 2




    $begingroup$
    The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
    $endgroup$
    – mathcounterexamples.net
    Jan 14 at 21:14


















$begingroup$
In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
$endgroup$
– Robert Israel
Jan 14 at 20:30




$begingroup$
In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
$endgroup$
– Robert Israel
Jan 14 at 20:30












$begingroup$
@RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
$endgroup$
– Daniel Mårtensson
Jan 14 at 20:38




$begingroup$
@RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
$endgroup$
– Daniel Mårtensson
Jan 14 at 20:38












$begingroup$
For example, the eigenvalues are not determined by the singular values.
$endgroup$
– Robert Israel
Jan 14 at 20:40




$begingroup$
For example, the eigenvalues are not determined by the singular values.
$endgroup$
– Robert Israel
Jan 14 at 20:40












$begingroup$
See Wikipedia - SVD and spectral decomposition
$endgroup$
– mathcounterexamples.net
Jan 14 at 20:40




$begingroup$
See Wikipedia - SVD and spectral decomposition
$endgroup$
– mathcounterexamples.net
Jan 14 at 20:40




2




2




$begingroup$
The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
$endgroup$
– mathcounterexamples.net
Jan 14 at 21:14






$begingroup$
The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
$endgroup$
– mathcounterexamples.net
Jan 14 at 21:14












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073700%2fis-it-possible-to-compute-the-eigenvalues-and-eigenvectors-if-i-know-the-svd%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073700%2fis-it-possible-to-compute-the-eigenvalues-and-eigenvectors-if-i-know-the-svd%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$