Is it possible to compute the eigenvalues and eigenvectors if I know the svd?
$begingroup$
I have a matrix $A$
A =
2.00000 3.00000 1.00000 0.50000 4.00000
4.00000 5.00000 7.00000 0.10000 1.00000
5.00000 3.00000 6.00000 19.20000 9.00000
1.00000 4.00000 1.00000 4.00000 7.00000
3.00000 1.00000 6.00000 2.00000 6.00000
I did the SVD on matrix $A$.
[U,S,V] = svd(A)
U =
-0.149403 -0.278046 -0.422317 -0.209000 0.823612
-0.198548 -0.731899 0.473681 -0.422812 -0.147509
-0.872587 0.409042 0.244648 -0.055987 0.091043
-0.304238 -0.128976 -0.728923 -0.262419 -0.539085
-0.290325 -0.450625 -0.078065 0.839971 -0.031671
S =
Diagonal Matrix
25.63602 0 0 0 0
0 10.08558 0 0 0
0 0 6.01867 0 0
0 0 0 3.71319 0
0 0 0 0 0.98157
V =
-0.2586652 -0.2894557 0.2176915 -0.0354640 0.8947963
-0.2171159 -0.4197117 -0.1924603 -0.8399028 -0.1850004
-0.3440842 -0.5730769 0.5257015 0.3427795 -0.3991605
-0.7273295 0.6171432 0.2428507 -0.1592856 -0.0760113
-0.4884167 -0.1754271 -0.7617289 0.3878607 0.0027517
But then when I checked the eigenvalues and eigenvectors, they where not the same.
[v, e] = eig(A)
v =
-0.18903 + 0.00000i 0.15906 - 0.21827i 0.15906 + 0.21827i -0.87710 + 0.00000i -0.20055 + 0.00000i
-0.39291 + 0.00000i 0.25894 + 0.33885i 0.25894 - 0.33885i 0.15307 + 0.00000i -0.83881 + 0.00000i
-0.74945 + 0.00000i -0.69885 + 0.00000i -0.69885 - 0.00000i 0.42831 + 0.00000i 0.12425 + 0.00000i
-0.30382 + 0.00000i 0.12855 - 0.36818i 0.12855 + 0.36818i 0.13432 + 0.00000i -0.05592 + 0.00000i
-0.39484 + 0.00000i 0.17079 + 0.27486i 0.17079 - 0.27486i -0.07597 + 0.00000i 0.48746 + 0.00000i
e =
Diagonal Matrix
21.3589 + 0.0000i 0 0 0 0
0 -1.9810 + 6.6826i 0 0 0
0 0 -1.9810 - 6.6826i 0 0
0 0 0 1.2580 + 0.0000i 0
0 0 0 0 4.3450 + 0.0000i
As you can see, the matrix $A$ have complex eigenvalues, but not in the $S$ matrix of SVD. Why? Is it possible for me to compute the eigenvalues and eigenvectors from svd if I know $A,U,S,V$?
matrices eigenvalues-eigenvectors svd singularvalues
$endgroup$
|
show 5 more comments
$begingroup$
I have a matrix $A$
A =
2.00000 3.00000 1.00000 0.50000 4.00000
4.00000 5.00000 7.00000 0.10000 1.00000
5.00000 3.00000 6.00000 19.20000 9.00000
1.00000 4.00000 1.00000 4.00000 7.00000
3.00000 1.00000 6.00000 2.00000 6.00000
I did the SVD on matrix $A$.
[U,S,V] = svd(A)
U =
-0.149403 -0.278046 -0.422317 -0.209000 0.823612
-0.198548 -0.731899 0.473681 -0.422812 -0.147509
-0.872587 0.409042 0.244648 -0.055987 0.091043
-0.304238 -0.128976 -0.728923 -0.262419 -0.539085
-0.290325 -0.450625 -0.078065 0.839971 -0.031671
S =
Diagonal Matrix
25.63602 0 0 0 0
0 10.08558 0 0 0
0 0 6.01867 0 0
0 0 0 3.71319 0
0 0 0 0 0.98157
V =
-0.2586652 -0.2894557 0.2176915 -0.0354640 0.8947963
-0.2171159 -0.4197117 -0.1924603 -0.8399028 -0.1850004
-0.3440842 -0.5730769 0.5257015 0.3427795 -0.3991605
-0.7273295 0.6171432 0.2428507 -0.1592856 -0.0760113
-0.4884167 -0.1754271 -0.7617289 0.3878607 0.0027517
But then when I checked the eigenvalues and eigenvectors, they where not the same.
[v, e] = eig(A)
v =
-0.18903 + 0.00000i 0.15906 - 0.21827i 0.15906 + 0.21827i -0.87710 + 0.00000i -0.20055 + 0.00000i
-0.39291 + 0.00000i 0.25894 + 0.33885i 0.25894 - 0.33885i 0.15307 + 0.00000i -0.83881 + 0.00000i
-0.74945 + 0.00000i -0.69885 + 0.00000i -0.69885 - 0.00000i 0.42831 + 0.00000i 0.12425 + 0.00000i
-0.30382 + 0.00000i 0.12855 - 0.36818i 0.12855 + 0.36818i 0.13432 + 0.00000i -0.05592 + 0.00000i
-0.39484 + 0.00000i 0.17079 + 0.27486i 0.17079 - 0.27486i -0.07597 + 0.00000i 0.48746 + 0.00000i
e =
Diagonal Matrix
21.3589 + 0.0000i 0 0 0 0
0 -1.9810 + 6.6826i 0 0 0
0 0 -1.9810 - 6.6826i 0 0
0 0 0 1.2580 + 0.0000i 0
0 0 0 0 4.3450 + 0.0000i
As you can see, the matrix $A$ have complex eigenvalues, but not in the $S$ matrix of SVD. Why? Is it possible for me to compute the eigenvalues and eigenvectors from svd if I know $A,U,S,V$?
matrices eigenvalues-eigenvectors svd singularvalues
$endgroup$
$begingroup$
In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
$endgroup$
– Robert Israel
Jan 14 at 20:30
$begingroup$
@RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
$endgroup$
– Daniel Mårtensson
Jan 14 at 20:38
$begingroup$
For example, the eigenvalues are not determined by the singular values.
$endgroup$
– Robert Israel
Jan 14 at 20:40
$begingroup$
See Wikipedia - SVD and spectral decomposition
$endgroup$
– mathcounterexamples.net
Jan 14 at 20:40
2
$begingroup$
The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
$endgroup$
– mathcounterexamples.net
Jan 14 at 21:14
|
show 5 more comments
$begingroup$
I have a matrix $A$
A =
2.00000 3.00000 1.00000 0.50000 4.00000
4.00000 5.00000 7.00000 0.10000 1.00000
5.00000 3.00000 6.00000 19.20000 9.00000
1.00000 4.00000 1.00000 4.00000 7.00000
3.00000 1.00000 6.00000 2.00000 6.00000
I did the SVD on matrix $A$.
[U,S,V] = svd(A)
U =
-0.149403 -0.278046 -0.422317 -0.209000 0.823612
-0.198548 -0.731899 0.473681 -0.422812 -0.147509
-0.872587 0.409042 0.244648 -0.055987 0.091043
-0.304238 -0.128976 -0.728923 -0.262419 -0.539085
-0.290325 -0.450625 -0.078065 0.839971 -0.031671
S =
Diagonal Matrix
25.63602 0 0 0 0
0 10.08558 0 0 0
0 0 6.01867 0 0
0 0 0 3.71319 0
0 0 0 0 0.98157
V =
-0.2586652 -0.2894557 0.2176915 -0.0354640 0.8947963
-0.2171159 -0.4197117 -0.1924603 -0.8399028 -0.1850004
-0.3440842 -0.5730769 0.5257015 0.3427795 -0.3991605
-0.7273295 0.6171432 0.2428507 -0.1592856 -0.0760113
-0.4884167 -0.1754271 -0.7617289 0.3878607 0.0027517
But then when I checked the eigenvalues and eigenvectors, they where not the same.
[v, e] = eig(A)
v =
-0.18903 + 0.00000i 0.15906 - 0.21827i 0.15906 + 0.21827i -0.87710 + 0.00000i -0.20055 + 0.00000i
-0.39291 + 0.00000i 0.25894 + 0.33885i 0.25894 - 0.33885i 0.15307 + 0.00000i -0.83881 + 0.00000i
-0.74945 + 0.00000i -0.69885 + 0.00000i -0.69885 - 0.00000i 0.42831 + 0.00000i 0.12425 + 0.00000i
-0.30382 + 0.00000i 0.12855 - 0.36818i 0.12855 + 0.36818i 0.13432 + 0.00000i -0.05592 + 0.00000i
-0.39484 + 0.00000i 0.17079 + 0.27486i 0.17079 - 0.27486i -0.07597 + 0.00000i 0.48746 + 0.00000i
e =
Diagonal Matrix
21.3589 + 0.0000i 0 0 0 0
0 -1.9810 + 6.6826i 0 0 0
0 0 -1.9810 - 6.6826i 0 0
0 0 0 1.2580 + 0.0000i 0
0 0 0 0 4.3450 + 0.0000i
As you can see, the matrix $A$ have complex eigenvalues, but not in the $S$ matrix of SVD. Why? Is it possible for me to compute the eigenvalues and eigenvectors from svd if I know $A,U,S,V$?
matrices eigenvalues-eigenvectors svd singularvalues
$endgroup$
I have a matrix $A$
A =
2.00000 3.00000 1.00000 0.50000 4.00000
4.00000 5.00000 7.00000 0.10000 1.00000
5.00000 3.00000 6.00000 19.20000 9.00000
1.00000 4.00000 1.00000 4.00000 7.00000
3.00000 1.00000 6.00000 2.00000 6.00000
I did the SVD on matrix $A$.
[U,S,V] = svd(A)
U =
-0.149403 -0.278046 -0.422317 -0.209000 0.823612
-0.198548 -0.731899 0.473681 -0.422812 -0.147509
-0.872587 0.409042 0.244648 -0.055987 0.091043
-0.304238 -0.128976 -0.728923 -0.262419 -0.539085
-0.290325 -0.450625 -0.078065 0.839971 -0.031671
S =
Diagonal Matrix
25.63602 0 0 0 0
0 10.08558 0 0 0
0 0 6.01867 0 0
0 0 0 3.71319 0
0 0 0 0 0.98157
V =
-0.2586652 -0.2894557 0.2176915 -0.0354640 0.8947963
-0.2171159 -0.4197117 -0.1924603 -0.8399028 -0.1850004
-0.3440842 -0.5730769 0.5257015 0.3427795 -0.3991605
-0.7273295 0.6171432 0.2428507 -0.1592856 -0.0760113
-0.4884167 -0.1754271 -0.7617289 0.3878607 0.0027517
But then when I checked the eigenvalues and eigenvectors, they where not the same.
[v, e] = eig(A)
v =
-0.18903 + 0.00000i 0.15906 - 0.21827i 0.15906 + 0.21827i -0.87710 + 0.00000i -0.20055 + 0.00000i
-0.39291 + 0.00000i 0.25894 + 0.33885i 0.25894 - 0.33885i 0.15307 + 0.00000i -0.83881 + 0.00000i
-0.74945 + 0.00000i -0.69885 + 0.00000i -0.69885 - 0.00000i 0.42831 + 0.00000i 0.12425 + 0.00000i
-0.30382 + 0.00000i 0.12855 - 0.36818i 0.12855 + 0.36818i 0.13432 + 0.00000i -0.05592 + 0.00000i
-0.39484 + 0.00000i 0.17079 + 0.27486i 0.17079 - 0.27486i -0.07597 + 0.00000i 0.48746 + 0.00000i
e =
Diagonal Matrix
21.3589 + 0.0000i 0 0 0 0
0 -1.9810 + 6.6826i 0 0 0
0 0 -1.9810 - 6.6826i 0 0
0 0 0 1.2580 + 0.0000i 0
0 0 0 0 4.3450 + 0.0000i
As you can see, the matrix $A$ have complex eigenvalues, but not in the $S$ matrix of SVD. Why? Is it possible for me to compute the eigenvalues and eigenvectors from svd if I know $A,U,S,V$?
matrices eigenvalues-eigenvectors svd singularvalues
matrices eigenvalues-eigenvectors svd singularvalues
asked Jan 14 at 20:21
Daniel MårtenssonDaniel Mårtensson
942416
942416
$begingroup$
In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
$endgroup$
– Robert Israel
Jan 14 at 20:30
$begingroup$
@RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
$endgroup$
– Daniel Mårtensson
Jan 14 at 20:38
$begingroup$
For example, the eigenvalues are not determined by the singular values.
$endgroup$
– Robert Israel
Jan 14 at 20:40
$begingroup$
See Wikipedia - SVD and spectral decomposition
$endgroup$
– mathcounterexamples.net
Jan 14 at 20:40
2
$begingroup$
The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
$endgroup$
– mathcounterexamples.net
Jan 14 at 21:14
|
show 5 more comments
$begingroup$
In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
$endgroup$
– Robert Israel
Jan 14 at 20:30
$begingroup$
@RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
$endgroup$
– Daniel Mårtensson
Jan 14 at 20:38
$begingroup$
For example, the eigenvalues are not determined by the singular values.
$endgroup$
– Robert Israel
Jan 14 at 20:40
$begingroup$
See Wikipedia - SVD and spectral decomposition
$endgroup$
– mathcounterexamples.net
Jan 14 at 20:40
2
$begingroup$
The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
$endgroup$
– mathcounterexamples.net
Jan 14 at 21:14
$begingroup$
In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
$endgroup$
– Robert Israel
Jan 14 at 20:30
$begingroup$
In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
$endgroup$
– Robert Israel
Jan 14 at 20:30
$begingroup$
@RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
$endgroup$
– Daniel Mårtensson
Jan 14 at 20:38
$begingroup$
@RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
$endgroup$
– Daniel Mårtensson
Jan 14 at 20:38
$begingroup$
For example, the eigenvalues are not determined by the singular values.
$endgroup$
– Robert Israel
Jan 14 at 20:40
$begingroup$
For example, the eigenvalues are not determined by the singular values.
$endgroup$
– Robert Israel
Jan 14 at 20:40
$begingroup$
See Wikipedia - SVD and spectral decomposition
$endgroup$
– mathcounterexamples.net
Jan 14 at 20:40
$begingroup$
See Wikipedia - SVD and spectral decomposition
$endgroup$
– mathcounterexamples.net
Jan 14 at 20:40
2
2
$begingroup$
The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
$endgroup$
– mathcounterexamples.net
Jan 14 at 21:14
$begingroup$
The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
$endgroup$
– mathcounterexamples.net
Jan 14 at 21:14
|
show 5 more comments
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073700%2fis-it-possible-to-compute-the-eigenvalues-and-eigenvectors-if-i-know-the-svd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073700%2fis-it-possible-to-compute-the-eigenvalues-and-eigenvectors-if-i-know-the-svd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In principle the SVD determines the eigenvalues and eigenvectors because it determines the matrix, but the connection is not a very simple one.
$endgroup$
– Robert Israel
Jan 14 at 20:30
$begingroup$
@RobertIsrael Ok, so due to advanced computations, the values changes a little bit? There is no idea to find the eigenvalues then by using the svd?
$endgroup$
– Daniel Mårtensson
Jan 14 at 20:38
$begingroup$
For example, the eigenvalues are not determined by the singular values.
$endgroup$
– Robert Israel
Jan 14 at 20:40
$begingroup$
See Wikipedia - SVD and spectral decomposition
$endgroup$
– mathcounterexamples.net
Jan 14 at 20:40
2
$begingroup$
The answer is negative. Look at the case $n=1$. You can’t deduce the value of $z in mathbb C$ from $vert zvert^2$ without additional information.
$endgroup$
– mathcounterexamples.net
Jan 14 at 21:14