Solve optimization problem using KKT conditions
$begingroup$
I'm trying to understand the solution to Boyd and Vandenberghe Problem 5.30:
Boyd and Vandenberghe Problem 5.30
The Lagrangian is $$L(X,nu)=text{tr}X-logdet X+nu'left(Xs-yright),$$ so the stationary KKT condition is $$nabla L(X,nu)=I-X^{-1}+snu'=0,$$ but the solution implies $$nabla L(X,nu)=I-X^{-1}+dfrac{nu s'+snu'}{2}.$$ Did I compute the gradient incorrectly?
convex-optimization vector-analysis lagrange-multiplier duality-theorems karush-kuhn-tucker
$endgroup$
add a comment |
$begingroup$
I'm trying to understand the solution to Boyd and Vandenberghe Problem 5.30:
Boyd and Vandenberghe Problem 5.30
The Lagrangian is $$L(X,nu)=text{tr}X-logdet X+nu'left(Xs-yright),$$ so the stationary KKT condition is $$nabla L(X,nu)=I-X^{-1}+snu'=0,$$ but the solution implies $$nabla L(X,nu)=I-X^{-1}+dfrac{nu s'+snu'}{2}.$$ Did I compute the gradient incorrectly?
convex-optimization vector-analysis lagrange-multiplier duality-theorems karush-kuhn-tucker
$endgroup$
1
$begingroup$
$X$ is symmetric, so the gradient of a quadratic form involving $X$ should also be symmetric.
$endgroup$
– Brian Borchers
Nov 28 '18 at 23:53
add a comment |
$begingroup$
I'm trying to understand the solution to Boyd and Vandenberghe Problem 5.30:
Boyd and Vandenberghe Problem 5.30
The Lagrangian is $$L(X,nu)=text{tr}X-logdet X+nu'left(Xs-yright),$$ so the stationary KKT condition is $$nabla L(X,nu)=I-X^{-1}+snu'=0,$$ but the solution implies $$nabla L(X,nu)=I-X^{-1}+dfrac{nu s'+snu'}{2}.$$ Did I compute the gradient incorrectly?
convex-optimization vector-analysis lagrange-multiplier duality-theorems karush-kuhn-tucker
$endgroup$
I'm trying to understand the solution to Boyd and Vandenberghe Problem 5.30:
Boyd and Vandenberghe Problem 5.30
The Lagrangian is $$L(X,nu)=text{tr}X-logdet X+nu'left(Xs-yright),$$ so the stationary KKT condition is $$nabla L(X,nu)=I-X^{-1}+snu'=0,$$ but the solution implies $$nabla L(X,nu)=I-X^{-1}+dfrac{nu s'+snu'}{2}.$$ Did I compute the gradient incorrectly?
convex-optimization vector-analysis lagrange-multiplier duality-theorems karush-kuhn-tucker
convex-optimization vector-analysis lagrange-multiplier duality-theorems karush-kuhn-tucker
asked Nov 28 '18 at 23:02
L WheelsL Wheels
212
212
1
$begingroup$
$X$ is symmetric, so the gradient of a quadratic form involving $X$ should also be symmetric.
$endgroup$
– Brian Borchers
Nov 28 '18 at 23:53
add a comment |
1
$begingroup$
$X$ is symmetric, so the gradient of a quadratic form involving $X$ should also be symmetric.
$endgroup$
– Brian Borchers
Nov 28 '18 at 23:53
1
1
$begingroup$
$X$ is symmetric, so the gradient of a quadratic form involving $X$ should also be symmetric.
$endgroup$
– Brian Borchers
Nov 28 '18 at 23:53
$begingroup$
$X$ is symmetric, so the gradient of a quadratic form involving $X$ should also be symmetric.
$endgroup$
– Brian Borchers
Nov 28 '18 at 23:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think you have to use this property:
$$ nu^TXs = sum X_{ij} nu_i s_j = tr(nu s^T X) = tr(X^T (nu s^T)^T) $$
X belongs to symmetric matrices $(X in S^n)$ so: $X^T = X$ then:
$$ tr(Xsnu^T) = tr(snu^TX) $$
we have obtained that $tr(nu s^TX)=tr(snu^TX)$, consequently:
$$ tr(nu s^TX) = [tr(nu s^TX) + tr(snu^TX)]/2 = tr(frac{nu s^T + snu^T}{2}cdot X) $$
and $nabla_X$ of that is the term: $(nu s^T + snu^T)/2$
$endgroup$
$begingroup$
Please see math.meta.stackexchange.com/questions/5020/… in order to improve your formatting.
$endgroup$
– Lord Shark the Unknown
Jan 14 at 18:18
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017884%2fsolve-optimization-problem-using-kkt-conditions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think you have to use this property:
$$ nu^TXs = sum X_{ij} nu_i s_j = tr(nu s^T X) = tr(X^T (nu s^T)^T) $$
X belongs to symmetric matrices $(X in S^n)$ so: $X^T = X$ then:
$$ tr(Xsnu^T) = tr(snu^TX) $$
we have obtained that $tr(nu s^TX)=tr(snu^TX)$, consequently:
$$ tr(nu s^TX) = [tr(nu s^TX) + tr(snu^TX)]/2 = tr(frac{nu s^T + snu^T}{2}cdot X) $$
and $nabla_X$ of that is the term: $(nu s^T + snu^T)/2$
$endgroup$
$begingroup$
Please see math.meta.stackexchange.com/questions/5020/… in order to improve your formatting.
$endgroup$
– Lord Shark the Unknown
Jan 14 at 18:18
add a comment |
$begingroup$
I think you have to use this property:
$$ nu^TXs = sum X_{ij} nu_i s_j = tr(nu s^T X) = tr(X^T (nu s^T)^T) $$
X belongs to symmetric matrices $(X in S^n)$ so: $X^T = X$ then:
$$ tr(Xsnu^T) = tr(snu^TX) $$
we have obtained that $tr(nu s^TX)=tr(snu^TX)$, consequently:
$$ tr(nu s^TX) = [tr(nu s^TX) + tr(snu^TX)]/2 = tr(frac{nu s^T + snu^T}{2}cdot X) $$
and $nabla_X$ of that is the term: $(nu s^T + snu^T)/2$
$endgroup$
$begingroup$
Please see math.meta.stackexchange.com/questions/5020/… in order to improve your formatting.
$endgroup$
– Lord Shark the Unknown
Jan 14 at 18:18
add a comment |
$begingroup$
I think you have to use this property:
$$ nu^TXs = sum X_{ij} nu_i s_j = tr(nu s^T X) = tr(X^T (nu s^T)^T) $$
X belongs to symmetric matrices $(X in S^n)$ so: $X^T = X$ then:
$$ tr(Xsnu^T) = tr(snu^TX) $$
we have obtained that $tr(nu s^TX)=tr(snu^TX)$, consequently:
$$ tr(nu s^TX) = [tr(nu s^TX) + tr(snu^TX)]/2 = tr(frac{nu s^T + snu^T}{2}cdot X) $$
and $nabla_X$ of that is the term: $(nu s^T + snu^T)/2$
$endgroup$
I think you have to use this property:
$$ nu^TXs = sum X_{ij} nu_i s_j = tr(nu s^T X) = tr(X^T (nu s^T)^T) $$
X belongs to symmetric matrices $(X in S^n)$ so: $X^T = X$ then:
$$ tr(Xsnu^T) = tr(snu^TX) $$
we have obtained that $tr(nu s^TX)=tr(snu^TX)$, consequently:
$$ tr(nu s^TX) = [tr(nu s^TX) + tr(snu^TX)]/2 = tr(frac{nu s^T + snu^T}{2}cdot X) $$
and $nabla_X$ of that is the term: $(nu s^T + snu^T)/2$
edited Jan 14 at 18:28
answered Jan 14 at 18:13
Abradolf LinclerAbradolf Lincler
11
11
$begingroup$
Please see math.meta.stackexchange.com/questions/5020/… in order to improve your formatting.
$endgroup$
– Lord Shark the Unknown
Jan 14 at 18:18
add a comment |
$begingroup$
Please see math.meta.stackexchange.com/questions/5020/… in order to improve your formatting.
$endgroup$
– Lord Shark the Unknown
Jan 14 at 18:18
$begingroup$
Please see math.meta.stackexchange.com/questions/5020/… in order to improve your formatting.
$endgroup$
– Lord Shark the Unknown
Jan 14 at 18:18
$begingroup$
Please see math.meta.stackexchange.com/questions/5020/… in order to improve your formatting.
$endgroup$
– Lord Shark the Unknown
Jan 14 at 18:18
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017884%2fsolve-optimization-problem-using-kkt-conditions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$X$ is symmetric, so the gradient of a quadratic form involving $X$ should also be symmetric.
$endgroup$
– Brian Borchers
Nov 28 '18 at 23:53