Find closed form of sum of fraction of binomial coefficients












3












$begingroup$


can somebody give me a hint for this exercise, where I have to find the specific closed form?




$sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}}, m,ninmathbb{N}$ and $mleq n$




What I have done so far:



$sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}} = sum_{k=0}^m frac{frac{m!}{(m-k)!cdot k!}}{frac{n!}{(n-k)!cdot k!}} = sum_{k=0}^m frac{m!}{n!}cdot frac{(n-k)!}{(m-k)!} = frac{m!}{n!}cdot sum_{k=0}^m frac{(n-k)!}{(m-k)!}$



Look at example 1: $n=8, m=5$



$frac{5!}{8!}cdot(frac{8!}{5!} + frac{7!}{4!} +frac{6!}{3!} +frac{5!}{2!} + frac{4!}{1!} +frac{3!}{0!}) = \frac{5!}{8!} cdot (8cdot7cdot6+7cdot6cdot5+6cdot5cdot4+5cdot4cdot3+4cdot3cdot2+3cdot2cdot1) = \
frac{5!}{8!} cdot (336+210+120+60+24+6) = frac{5!}{8!}cdot 756 = 2.25$



I can't find a pattern.



Edit 1: Maybe there is an approach with recursion.



Edit 2: Okay I found the solution.



$sum_{k=0}^m frac{m!}{n!}cdot sum_{k=0}^m frac{(n-k)!}{(m-k)!}= frac{m!}{n!}cdotfrac{1}{4}cdot tcdot(t+1)cdot(t+2)cdot(t+3)$ with $t=(n-m)!$



Edit 3: This formula works well for example 1, but fails for example 2: $n=9, m=3$



$frac{3!}{9!}cdot(frac{9!}{3!} + frac{8!}{2!} +frac{7!}{1!} +frac{6!}{0!}) = \frac{3!}{9!} cdot (9cdot8cdot7cdot6cdot5cdot4+8cdot7cdot6cdot5cdot4cdot3+7cdot6cdot5cdot4cdot3cdot2+6cdot5cdot4cdot3cdot2cdot1) = \
frac{3!}{9!} cdot (60480+20160+5040+720) = frac{3!}{9!}cdot 86400 = 1.428$



So I have still no general solution. Can someone help?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hope the following combinatorial problem help you: given $n$ marbles $m$ of whom are black and the rest are red, what's the probability of choosing at most $m$ marbles all of which being black?
    $endgroup$
    – Mostafa Ayaz
    Jan 13 at 20:38
















3












$begingroup$


can somebody give me a hint for this exercise, where I have to find the specific closed form?




$sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}}, m,ninmathbb{N}$ and $mleq n$




What I have done so far:



$sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}} = sum_{k=0}^m frac{frac{m!}{(m-k)!cdot k!}}{frac{n!}{(n-k)!cdot k!}} = sum_{k=0}^m frac{m!}{n!}cdot frac{(n-k)!}{(m-k)!} = frac{m!}{n!}cdot sum_{k=0}^m frac{(n-k)!}{(m-k)!}$



Look at example 1: $n=8, m=5$



$frac{5!}{8!}cdot(frac{8!}{5!} + frac{7!}{4!} +frac{6!}{3!} +frac{5!}{2!} + frac{4!}{1!} +frac{3!}{0!}) = \frac{5!}{8!} cdot (8cdot7cdot6+7cdot6cdot5+6cdot5cdot4+5cdot4cdot3+4cdot3cdot2+3cdot2cdot1) = \
frac{5!}{8!} cdot (336+210+120+60+24+6) = frac{5!}{8!}cdot 756 = 2.25$



I can't find a pattern.



Edit 1: Maybe there is an approach with recursion.



Edit 2: Okay I found the solution.



$sum_{k=0}^m frac{m!}{n!}cdot sum_{k=0}^m frac{(n-k)!}{(m-k)!}= frac{m!}{n!}cdotfrac{1}{4}cdot tcdot(t+1)cdot(t+2)cdot(t+3)$ with $t=(n-m)!$



Edit 3: This formula works well for example 1, but fails for example 2: $n=9, m=3$



$frac{3!}{9!}cdot(frac{9!}{3!} + frac{8!}{2!} +frac{7!}{1!} +frac{6!}{0!}) = \frac{3!}{9!} cdot (9cdot8cdot7cdot6cdot5cdot4+8cdot7cdot6cdot5cdot4cdot3+7cdot6cdot5cdot4cdot3cdot2+6cdot5cdot4cdot3cdot2cdot1) = \
frac{3!}{9!} cdot (60480+20160+5040+720) = frac{3!}{9!}cdot 86400 = 1.428$



So I have still no general solution. Can someone help?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hope the following combinatorial problem help you: given $n$ marbles $m$ of whom are black and the rest are red, what's the probability of choosing at most $m$ marbles all of which being black?
    $endgroup$
    – Mostafa Ayaz
    Jan 13 at 20:38














3












3








3


0



$begingroup$


can somebody give me a hint for this exercise, where I have to find the specific closed form?




$sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}}, m,ninmathbb{N}$ and $mleq n$




What I have done so far:



$sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}} = sum_{k=0}^m frac{frac{m!}{(m-k)!cdot k!}}{frac{n!}{(n-k)!cdot k!}} = sum_{k=0}^m frac{m!}{n!}cdot frac{(n-k)!}{(m-k)!} = frac{m!}{n!}cdot sum_{k=0}^m frac{(n-k)!}{(m-k)!}$



Look at example 1: $n=8, m=5$



$frac{5!}{8!}cdot(frac{8!}{5!} + frac{7!}{4!} +frac{6!}{3!} +frac{5!}{2!} + frac{4!}{1!} +frac{3!}{0!}) = \frac{5!}{8!} cdot (8cdot7cdot6+7cdot6cdot5+6cdot5cdot4+5cdot4cdot3+4cdot3cdot2+3cdot2cdot1) = \
frac{5!}{8!} cdot (336+210+120+60+24+6) = frac{5!}{8!}cdot 756 = 2.25$



I can't find a pattern.



Edit 1: Maybe there is an approach with recursion.



Edit 2: Okay I found the solution.



$sum_{k=0}^m frac{m!}{n!}cdot sum_{k=0}^m frac{(n-k)!}{(m-k)!}= frac{m!}{n!}cdotfrac{1}{4}cdot tcdot(t+1)cdot(t+2)cdot(t+3)$ with $t=(n-m)!$



Edit 3: This formula works well for example 1, but fails for example 2: $n=9, m=3$



$frac{3!}{9!}cdot(frac{9!}{3!} + frac{8!}{2!} +frac{7!}{1!} +frac{6!}{0!}) = \frac{3!}{9!} cdot (9cdot8cdot7cdot6cdot5cdot4+8cdot7cdot6cdot5cdot4cdot3+7cdot6cdot5cdot4cdot3cdot2+6cdot5cdot4cdot3cdot2cdot1) = \
frac{3!}{9!} cdot (60480+20160+5040+720) = frac{3!}{9!}cdot 86400 = 1.428$



So I have still no general solution. Can someone help?










share|cite|improve this question











$endgroup$




can somebody give me a hint for this exercise, where I have to find the specific closed form?




$sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}}, m,ninmathbb{N}$ and $mleq n$




What I have done so far:



$sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}} = sum_{k=0}^m frac{frac{m!}{(m-k)!cdot k!}}{frac{n!}{(n-k)!cdot k!}} = sum_{k=0}^m frac{m!}{n!}cdot frac{(n-k)!}{(m-k)!} = frac{m!}{n!}cdot sum_{k=0}^m frac{(n-k)!}{(m-k)!}$



Look at example 1: $n=8, m=5$



$frac{5!}{8!}cdot(frac{8!}{5!} + frac{7!}{4!} +frac{6!}{3!} +frac{5!}{2!} + frac{4!}{1!} +frac{3!}{0!}) = \frac{5!}{8!} cdot (8cdot7cdot6+7cdot6cdot5+6cdot5cdot4+5cdot4cdot3+4cdot3cdot2+3cdot2cdot1) = \
frac{5!}{8!} cdot (336+210+120+60+24+6) = frac{5!}{8!}cdot 756 = 2.25$



I can't find a pattern.



Edit 1: Maybe there is an approach with recursion.



Edit 2: Okay I found the solution.



$sum_{k=0}^m frac{m!}{n!}cdot sum_{k=0}^m frac{(n-k)!}{(m-k)!}= frac{m!}{n!}cdotfrac{1}{4}cdot tcdot(t+1)cdot(t+2)cdot(t+3)$ with $t=(n-m)!$



Edit 3: This formula works well for example 1, but fails for example 2: $n=9, m=3$



$frac{3!}{9!}cdot(frac{9!}{3!} + frac{8!}{2!} +frac{7!}{1!} +frac{6!}{0!}) = \frac{3!}{9!} cdot (9cdot8cdot7cdot6cdot5cdot4+8cdot7cdot6cdot5cdot4cdot3+7cdot6cdot5cdot4cdot3cdot2+6cdot5cdot4cdot3cdot2cdot1) = \
frac{3!}{9!} cdot (60480+20160+5040+720) = frac{3!}{9!}cdot 86400 = 1.428$



So I have still no general solution. Can someone help?







summation binomial-coefficients closed-form






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 14 at 15:14









Martin Sleziak

44.8k10118272




44.8k10118272










asked Jan 13 at 18:38









MatthiasMatthias

253




253












  • $begingroup$
    Hope the following combinatorial problem help you: given $n$ marbles $m$ of whom are black and the rest are red, what's the probability of choosing at most $m$ marbles all of which being black?
    $endgroup$
    – Mostafa Ayaz
    Jan 13 at 20:38


















  • $begingroup$
    Hope the following combinatorial problem help you: given $n$ marbles $m$ of whom are black and the rest are red, what's the probability of choosing at most $m$ marbles all of which being black?
    $endgroup$
    – Mostafa Ayaz
    Jan 13 at 20:38
















$begingroup$
Hope the following combinatorial problem help you: given $n$ marbles $m$ of whom are black and the rest are red, what's the probability of choosing at most $m$ marbles all of which being black?
$endgroup$
– Mostafa Ayaz
Jan 13 at 20:38




$begingroup$
Hope the following combinatorial problem help you: given $n$ marbles $m$ of whom are black and the rest are red, what's the probability of choosing at most $m$ marbles all of which being black?
$endgroup$
– Mostafa Ayaz
Jan 13 at 20:38










3 Answers
3






active

oldest

votes


















0












$begingroup$

Let



$$S(m,n):=sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}}$$



We are going to prove:
$$S(m,n)=frac{n+1}{n+1-m}.tag{1}$$



Obviously (1) is valid for $m=0$ and arbitray $nge 0$. Further, if (1) is valid for $(m-1,n-1)$ it is valid for $(m,n)$ as well:
$$
S(m,n):=1+sum_{k=1}^m frac{frac mkbinom{m-1}{k-1}}{frac nkbinom{n-1}{k-1}}
=1+frac{m}{n} S(m-1,n-1)\
stackrel{I.H.}{=}1+frac{m}{n}frac{n}{n+1-m}=frac{n+1}{n+1-m}.
$$



Thus by induction (1) is valid for arbitrary $0le m le n$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Hi user, your induction is reasonable, but how to get to this expression $S(m,n)=frac{n+1}{n+1-m}$?
    $endgroup$
    – Matthias
    Jan 13 at 20:50












  • $begingroup$
    Play around with small $n$ and $m$ and try finding a pattern.
    $endgroup$
    – user
    Jan 13 at 20:52












  • $begingroup$
    See also: Prove that $sum_{k=0}^{m}frac{binom{m}{k}}{binom{n}{k}}=frac{n+1}{n+1-m}$. Found using Approach0 - for more tips on searching see: How to search on this site?
    $endgroup$
    – Martin Sleziak
    Jan 14 at 15:16



















1












$begingroup$

With $mle n$ we have the sum



$$sum_{k=0}^m {mchoose k} {nchoose k}^{-1}
= sum_{k=0}^m frac{m!}{(m-k)! k!} frac{k! (n-k)!}{n!}
\ = frac{m!}{n!} sum_{k=0}^m frac{(n-k)!}{(m-k)!}
= {nchoose m}^{-1} sum_{k=0}^m {n-kchoose m-k}
\ = {nchoose m}^{-1} sum_{k=0}^m [z^{m-k}] (1+z)^{n-k}
= {nchoose m}^{-1} [z^m] (1+z)^n sum_{k=0}^m z^k (1+z)^{-k}.$$



We may extend $k$ beyond $m$ due to the $z^k$ term and the coefficient
extractor $[z^m]$ in front, getting



$${nchoose m}^{-1} [z^m] (1+z)^n sum_{kge 0} z^k (1+z)^{-k}
= {nchoose m}^{-1} [z^m] (1+z)^n frac{1}{1-z/(1+z)}
\ = {nchoose m}^{-1} [z^m] (1+z)^{n+1}
= {nchoose m}^{-1} {n+1choose m}
= frac{n+1}{n+1-m}.$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Hint:
    Use the beta function
    begin{align*}
    binom{n}{k}^{-1}=(n+1)int_0^1(1-x)^kx^{n-k},dx
    end{align*}






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072374%2ffind-closed-form-of-sum-of-fraction-of-binomial-coefficients%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      Let



      $$S(m,n):=sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}}$$



      We are going to prove:
      $$S(m,n)=frac{n+1}{n+1-m}.tag{1}$$



      Obviously (1) is valid for $m=0$ and arbitray $nge 0$. Further, if (1) is valid for $(m-1,n-1)$ it is valid for $(m,n)$ as well:
      $$
      S(m,n):=1+sum_{k=1}^m frac{frac mkbinom{m-1}{k-1}}{frac nkbinom{n-1}{k-1}}
      =1+frac{m}{n} S(m-1,n-1)\
      stackrel{I.H.}{=}1+frac{m}{n}frac{n}{n+1-m}=frac{n+1}{n+1-m}.
      $$



      Thus by induction (1) is valid for arbitrary $0le m le n$.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Hi user, your induction is reasonable, but how to get to this expression $S(m,n)=frac{n+1}{n+1-m}$?
        $endgroup$
        – Matthias
        Jan 13 at 20:50












      • $begingroup$
        Play around with small $n$ and $m$ and try finding a pattern.
        $endgroup$
        – user
        Jan 13 at 20:52












      • $begingroup$
        See also: Prove that $sum_{k=0}^{m}frac{binom{m}{k}}{binom{n}{k}}=frac{n+1}{n+1-m}$. Found using Approach0 - for more tips on searching see: How to search on this site?
        $endgroup$
        – Martin Sleziak
        Jan 14 at 15:16
















      0












      $begingroup$

      Let



      $$S(m,n):=sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}}$$



      We are going to prove:
      $$S(m,n)=frac{n+1}{n+1-m}.tag{1}$$



      Obviously (1) is valid for $m=0$ and arbitray $nge 0$. Further, if (1) is valid for $(m-1,n-1)$ it is valid for $(m,n)$ as well:
      $$
      S(m,n):=1+sum_{k=1}^m frac{frac mkbinom{m-1}{k-1}}{frac nkbinom{n-1}{k-1}}
      =1+frac{m}{n} S(m-1,n-1)\
      stackrel{I.H.}{=}1+frac{m}{n}frac{n}{n+1-m}=frac{n+1}{n+1-m}.
      $$



      Thus by induction (1) is valid for arbitrary $0le m le n$.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Hi user, your induction is reasonable, but how to get to this expression $S(m,n)=frac{n+1}{n+1-m}$?
        $endgroup$
        – Matthias
        Jan 13 at 20:50












      • $begingroup$
        Play around with small $n$ and $m$ and try finding a pattern.
        $endgroup$
        – user
        Jan 13 at 20:52












      • $begingroup$
        See also: Prove that $sum_{k=0}^{m}frac{binom{m}{k}}{binom{n}{k}}=frac{n+1}{n+1-m}$. Found using Approach0 - for more tips on searching see: How to search on this site?
        $endgroup$
        – Martin Sleziak
        Jan 14 at 15:16














      0












      0








      0





      $begingroup$

      Let



      $$S(m,n):=sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}}$$



      We are going to prove:
      $$S(m,n)=frac{n+1}{n+1-m}.tag{1}$$



      Obviously (1) is valid for $m=0$ and arbitray $nge 0$. Further, if (1) is valid for $(m-1,n-1)$ it is valid for $(m,n)$ as well:
      $$
      S(m,n):=1+sum_{k=1}^m frac{frac mkbinom{m-1}{k-1}}{frac nkbinom{n-1}{k-1}}
      =1+frac{m}{n} S(m-1,n-1)\
      stackrel{I.H.}{=}1+frac{m}{n}frac{n}{n+1-m}=frac{n+1}{n+1-m}.
      $$



      Thus by induction (1) is valid for arbitrary $0le m le n$.






      share|cite|improve this answer











      $endgroup$



      Let



      $$S(m,n):=sum_{k=0}^m frac{binom{m}{k}}{binom{n}{k}}$$



      We are going to prove:
      $$S(m,n)=frac{n+1}{n+1-m}.tag{1}$$



      Obviously (1) is valid for $m=0$ and arbitray $nge 0$. Further, if (1) is valid for $(m-1,n-1)$ it is valid for $(m,n)$ as well:
      $$
      S(m,n):=1+sum_{k=1}^m frac{frac mkbinom{m-1}{k-1}}{frac nkbinom{n-1}{k-1}}
      =1+frac{m}{n} S(m-1,n-1)\
      stackrel{I.H.}{=}1+frac{m}{n}frac{n}{n+1-m}=frac{n+1}{n+1-m}.
      $$



      Thus by induction (1) is valid for arbitrary $0le m le n$.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jan 13 at 21:58

























      answered Jan 13 at 20:43









      useruser

      4,4101929




      4,4101929












      • $begingroup$
        Hi user, your induction is reasonable, but how to get to this expression $S(m,n)=frac{n+1}{n+1-m}$?
        $endgroup$
        – Matthias
        Jan 13 at 20:50












      • $begingroup$
        Play around with small $n$ and $m$ and try finding a pattern.
        $endgroup$
        – user
        Jan 13 at 20:52












      • $begingroup$
        See also: Prove that $sum_{k=0}^{m}frac{binom{m}{k}}{binom{n}{k}}=frac{n+1}{n+1-m}$. Found using Approach0 - for more tips on searching see: How to search on this site?
        $endgroup$
        – Martin Sleziak
        Jan 14 at 15:16


















      • $begingroup$
        Hi user, your induction is reasonable, but how to get to this expression $S(m,n)=frac{n+1}{n+1-m}$?
        $endgroup$
        – Matthias
        Jan 13 at 20:50












      • $begingroup$
        Play around with small $n$ and $m$ and try finding a pattern.
        $endgroup$
        – user
        Jan 13 at 20:52












      • $begingroup$
        See also: Prove that $sum_{k=0}^{m}frac{binom{m}{k}}{binom{n}{k}}=frac{n+1}{n+1-m}$. Found using Approach0 - for more tips on searching see: How to search on this site?
        $endgroup$
        – Martin Sleziak
        Jan 14 at 15:16
















      $begingroup$
      Hi user, your induction is reasonable, but how to get to this expression $S(m,n)=frac{n+1}{n+1-m}$?
      $endgroup$
      – Matthias
      Jan 13 at 20:50






      $begingroup$
      Hi user, your induction is reasonable, but how to get to this expression $S(m,n)=frac{n+1}{n+1-m}$?
      $endgroup$
      – Matthias
      Jan 13 at 20:50














      $begingroup$
      Play around with small $n$ and $m$ and try finding a pattern.
      $endgroup$
      – user
      Jan 13 at 20:52






      $begingroup$
      Play around with small $n$ and $m$ and try finding a pattern.
      $endgroup$
      – user
      Jan 13 at 20:52














      $begingroup$
      See also: Prove that $sum_{k=0}^{m}frac{binom{m}{k}}{binom{n}{k}}=frac{n+1}{n+1-m}$. Found using Approach0 - for more tips on searching see: How to search on this site?
      $endgroup$
      – Martin Sleziak
      Jan 14 at 15:16




      $begingroup$
      See also: Prove that $sum_{k=0}^{m}frac{binom{m}{k}}{binom{n}{k}}=frac{n+1}{n+1-m}$. Found using Approach0 - for more tips on searching see: How to search on this site?
      $endgroup$
      – Martin Sleziak
      Jan 14 at 15:16











      1












      $begingroup$

      With $mle n$ we have the sum



      $$sum_{k=0}^m {mchoose k} {nchoose k}^{-1}
      = sum_{k=0}^m frac{m!}{(m-k)! k!} frac{k! (n-k)!}{n!}
      \ = frac{m!}{n!} sum_{k=0}^m frac{(n-k)!}{(m-k)!}
      = {nchoose m}^{-1} sum_{k=0}^m {n-kchoose m-k}
      \ = {nchoose m}^{-1} sum_{k=0}^m [z^{m-k}] (1+z)^{n-k}
      = {nchoose m}^{-1} [z^m] (1+z)^n sum_{k=0}^m z^k (1+z)^{-k}.$$



      We may extend $k$ beyond $m$ due to the $z^k$ term and the coefficient
      extractor $[z^m]$ in front, getting



      $${nchoose m}^{-1} [z^m] (1+z)^n sum_{kge 0} z^k (1+z)^{-k}
      = {nchoose m}^{-1} [z^m] (1+z)^n frac{1}{1-z/(1+z)}
      \ = {nchoose m}^{-1} [z^m] (1+z)^{n+1}
      = {nchoose m}^{-1} {n+1choose m}
      = frac{n+1}{n+1-m}.$$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        With $mle n$ we have the sum



        $$sum_{k=0}^m {mchoose k} {nchoose k}^{-1}
        = sum_{k=0}^m frac{m!}{(m-k)! k!} frac{k! (n-k)!}{n!}
        \ = frac{m!}{n!} sum_{k=0}^m frac{(n-k)!}{(m-k)!}
        = {nchoose m}^{-1} sum_{k=0}^m {n-kchoose m-k}
        \ = {nchoose m}^{-1} sum_{k=0}^m [z^{m-k}] (1+z)^{n-k}
        = {nchoose m}^{-1} [z^m] (1+z)^n sum_{k=0}^m z^k (1+z)^{-k}.$$



        We may extend $k$ beyond $m$ due to the $z^k$ term and the coefficient
        extractor $[z^m]$ in front, getting



        $${nchoose m}^{-1} [z^m] (1+z)^n sum_{kge 0} z^k (1+z)^{-k}
        = {nchoose m}^{-1} [z^m] (1+z)^n frac{1}{1-z/(1+z)}
        \ = {nchoose m}^{-1} [z^m] (1+z)^{n+1}
        = {nchoose m}^{-1} {n+1choose m}
        = frac{n+1}{n+1-m}.$$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          With $mle n$ we have the sum



          $$sum_{k=0}^m {mchoose k} {nchoose k}^{-1}
          = sum_{k=0}^m frac{m!}{(m-k)! k!} frac{k! (n-k)!}{n!}
          \ = frac{m!}{n!} sum_{k=0}^m frac{(n-k)!}{(m-k)!}
          = {nchoose m}^{-1} sum_{k=0}^m {n-kchoose m-k}
          \ = {nchoose m}^{-1} sum_{k=0}^m [z^{m-k}] (1+z)^{n-k}
          = {nchoose m}^{-1} [z^m] (1+z)^n sum_{k=0}^m z^k (1+z)^{-k}.$$



          We may extend $k$ beyond $m$ due to the $z^k$ term and the coefficient
          extractor $[z^m]$ in front, getting



          $${nchoose m}^{-1} [z^m] (1+z)^n sum_{kge 0} z^k (1+z)^{-k}
          = {nchoose m}^{-1} [z^m] (1+z)^n frac{1}{1-z/(1+z)}
          \ = {nchoose m}^{-1} [z^m] (1+z)^{n+1}
          = {nchoose m}^{-1} {n+1choose m}
          = frac{n+1}{n+1-m}.$$






          share|cite|improve this answer









          $endgroup$



          With $mle n$ we have the sum



          $$sum_{k=0}^m {mchoose k} {nchoose k}^{-1}
          = sum_{k=0}^m frac{m!}{(m-k)! k!} frac{k! (n-k)!}{n!}
          \ = frac{m!}{n!} sum_{k=0}^m frac{(n-k)!}{(m-k)!}
          = {nchoose m}^{-1} sum_{k=0}^m {n-kchoose m-k}
          \ = {nchoose m}^{-1} sum_{k=0}^m [z^{m-k}] (1+z)^{n-k}
          = {nchoose m}^{-1} [z^m] (1+z)^n sum_{k=0}^m z^k (1+z)^{-k}.$$



          We may extend $k$ beyond $m$ due to the $z^k$ term and the coefficient
          extractor $[z^m]$ in front, getting



          $${nchoose m}^{-1} [z^m] (1+z)^n sum_{kge 0} z^k (1+z)^{-k}
          = {nchoose m}^{-1} [z^m] (1+z)^n frac{1}{1-z/(1+z)}
          \ = {nchoose m}^{-1} [z^m] (1+z)^{n+1}
          = {nchoose m}^{-1} {n+1choose m}
          = frac{n+1}{n+1-m}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 14 at 14:34









          Marko RiedelMarko Riedel

          40.3k339108




          40.3k339108























              0












              $begingroup$

              Hint:
              Use the beta function
              begin{align*}
              binom{n}{k}^{-1}=(n+1)int_0^1(1-x)^kx^{n-k},dx
              end{align*}






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Hint:
                Use the beta function
                begin{align*}
                binom{n}{k}^{-1}=(n+1)int_0^1(1-x)^kx^{n-k},dx
                end{align*}






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Hint:
                  Use the beta function
                  begin{align*}
                  binom{n}{k}^{-1}=(n+1)int_0^1(1-x)^kx^{n-k},dx
                  end{align*}






                  share|cite|improve this answer









                  $endgroup$



                  Hint:
                  Use the beta function
                  begin{align*}
                  binom{n}{k}^{-1}=(n+1)int_0^1(1-x)^kx^{n-k},dx
                  end{align*}







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 13 at 21:17









                  Markus ScheuerMarkus Scheuer

                  61.6k457146




                  61.6k457146






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072374%2ffind-closed-form-of-sum-of-fraction-of-binomial-coefficients%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith