Finding the Galois group of $mathbb{Q}(2^{1/p},zeta_{2n})$
$begingroup$
How to find the Galois group of the extension $mathbb{Q}(2^{1/p},zeta_{2n})$ of $mathbb{Q}$? Here $n$ is a positive integer, and $p$ is an odd prime factor of $n$.
galois-theory
$endgroup$
add a comment |
$begingroup$
How to find the Galois group of the extension $mathbb{Q}(2^{1/p},zeta_{2n})$ of $mathbb{Q}$? Here $n$ is a positive integer, and $p$ is an odd prime factor of $n$.
galois-theory
$endgroup$
$begingroup$
Did you show that $Gal(mathbb{Q}(zeta_{2n})/mathbb{Q}) = { zeta_{2n}^b mapsto zeta_{2n}^{ab}, a in mathbb{Z}/2nmathbb{Z}^times}$ ? Then assume $pnmid varphi(2n)$, what can you say of $[mathbb{Q}(2^{1/p}):mathbb{Q}] ,[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})],[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}] $ ? So what is $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q}(zeta_{2n}))$ and $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q})$ ?
$endgroup$
– reuns
Jan 12 at 9:42
$begingroup$
@reuns: Why is $pnmidvarphi(2n)$?
$endgroup$
– sai
Jan 12 at 10:33
$begingroup$
$[mathbb{Q}(2^{1/p}):mathbb{Q}] = ?$ then use the multiplicativity of degree of extension to find $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}]$ and $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})]$
$endgroup$
– reuns
Jan 12 at 14:11
add a comment |
$begingroup$
How to find the Galois group of the extension $mathbb{Q}(2^{1/p},zeta_{2n})$ of $mathbb{Q}$? Here $n$ is a positive integer, and $p$ is an odd prime factor of $n$.
galois-theory
$endgroup$
How to find the Galois group of the extension $mathbb{Q}(2^{1/p},zeta_{2n})$ of $mathbb{Q}$? Here $n$ is a positive integer, and $p$ is an odd prime factor of $n$.
galois-theory
galois-theory
asked Jan 12 at 4:18
saisai
1376
1376
$begingroup$
Did you show that $Gal(mathbb{Q}(zeta_{2n})/mathbb{Q}) = { zeta_{2n}^b mapsto zeta_{2n}^{ab}, a in mathbb{Z}/2nmathbb{Z}^times}$ ? Then assume $pnmid varphi(2n)$, what can you say of $[mathbb{Q}(2^{1/p}):mathbb{Q}] ,[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})],[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}] $ ? So what is $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q}(zeta_{2n}))$ and $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q})$ ?
$endgroup$
– reuns
Jan 12 at 9:42
$begingroup$
@reuns: Why is $pnmidvarphi(2n)$?
$endgroup$
– sai
Jan 12 at 10:33
$begingroup$
$[mathbb{Q}(2^{1/p}):mathbb{Q}] = ?$ then use the multiplicativity of degree of extension to find $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}]$ and $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})]$
$endgroup$
– reuns
Jan 12 at 14:11
add a comment |
$begingroup$
Did you show that $Gal(mathbb{Q}(zeta_{2n})/mathbb{Q}) = { zeta_{2n}^b mapsto zeta_{2n}^{ab}, a in mathbb{Z}/2nmathbb{Z}^times}$ ? Then assume $pnmid varphi(2n)$, what can you say of $[mathbb{Q}(2^{1/p}):mathbb{Q}] ,[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})],[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}] $ ? So what is $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q}(zeta_{2n}))$ and $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q})$ ?
$endgroup$
– reuns
Jan 12 at 9:42
$begingroup$
@reuns: Why is $pnmidvarphi(2n)$?
$endgroup$
– sai
Jan 12 at 10:33
$begingroup$
$[mathbb{Q}(2^{1/p}):mathbb{Q}] = ?$ then use the multiplicativity of degree of extension to find $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}]$ and $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})]$
$endgroup$
– reuns
Jan 12 at 14:11
$begingroup$
Did you show that $Gal(mathbb{Q}(zeta_{2n})/mathbb{Q}) = { zeta_{2n}^b mapsto zeta_{2n}^{ab}, a in mathbb{Z}/2nmathbb{Z}^times}$ ? Then assume $pnmid varphi(2n)$, what can you say of $[mathbb{Q}(2^{1/p}):mathbb{Q}] ,[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})],[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}] $ ? So what is $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q}(zeta_{2n}))$ and $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q})$ ?
$endgroup$
– reuns
Jan 12 at 9:42
$begingroup$
Did you show that $Gal(mathbb{Q}(zeta_{2n})/mathbb{Q}) = { zeta_{2n}^b mapsto zeta_{2n}^{ab}, a in mathbb{Z}/2nmathbb{Z}^times}$ ? Then assume $pnmid varphi(2n)$, what can you say of $[mathbb{Q}(2^{1/p}):mathbb{Q}] ,[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})],[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}] $ ? So what is $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q}(zeta_{2n}))$ and $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q})$ ?
$endgroup$
– reuns
Jan 12 at 9:42
$begingroup$
@reuns: Why is $pnmidvarphi(2n)$?
$endgroup$
– sai
Jan 12 at 10:33
$begingroup$
@reuns: Why is $pnmidvarphi(2n)$?
$endgroup$
– sai
Jan 12 at 10:33
$begingroup$
$[mathbb{Q}(2^{1/p}):mathbb{Q}] = ?$ then use the multiplicativity of degree of extension to find $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}]$ and $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})]$
$endgroup$
– reuns
Jan 12 at 14:11
$begingroup$
$[mathbb{Q}(2^{1/p}):mathbb{Q}] = ?$ then use the multiplicativity of degree of extension to find $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}]$ and $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})]$
$endgroup$
– reuns
Jan 12 at 14:11
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070597%2ffinding-the-galois-group-of-mathbbq21-p-zeta-2n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070597%2ffinding-the-galois-group-of-mathbbq21-p-zeta-2n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Did you show that $Gal(mathbb{Q}(zeta_{2n})/mathbb{Q}) = { zeta_{2n}^b mapsto zeta_{2n}^{ab}, a in mathbb{Z}/2nmathbb{Z}^times}$ ? Then assume $pnmid varphi(2n)$, what can you say of $[mathbb{Q}(2^{1/p}):mathbb{Q}] ,[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})],[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}] $ ? So what is $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q}(zeta_{2n}))$ and $Gal(mathbb{Q}(zeta_{2n},2^{1/p})/mathbb{Q})$ ?
$endgroup$
– reuns
Jan 12 at 9:42
$begingroup$
@reuns: Why is $pnmidvarphi(2n)$?
$endgroup$
– sai
Jan 12 at 10:33
$begingroup$
$[mathbb{Q}(2^{1/p}):mathbb{Q}] = ?$ then use the multiplicativity of degree of extension to find $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}]$ and $[mathbb{Q}(zeta_{2n},2^{1/p}):mathbb{Q}(zeta_{2n})]$
$endgroup$
– reuns
Jan 12 at 14:11