How can $sum_{n=1}^{infty} 2^{-n} frac{|x_n-z_n|}{1+|x_n-z_n|}$ be symmetric?
$begingroup$
How can $sum_{n=1}^{infty} 2^{-n} frac{|x_n-z_n|}{1+|x_n-z_n|}$ be symmetric?
Problem:
Consider that the sequences are s.t. they obey:
$(x_n)$ follows $f(x)=x^3$
$(z_n)$ follows $f(x)=x^2$
Then the graph of this is unsymmetric.
functional-analysis
$endgroup$
add a comment |
$begingroup$
How can $sum_{n=1}^{infty} 2^{-n} frac{|x_n-z_n|}{1+|x_n-z_n|}$ be symmetric?
Problem:
Consider that the sequences are s.t. they obey:
$(x_n)$ follows $f(x)=x^3$
$(z_n)$ follows $f(x)=x^2$
Then the graph of this is unsymmetric.
functional-analysis
$endgroup$
1
$begingroup$
It is symmetric in the sense that if your interchange the roles of $x_n$ and $y_n$, you get the same value. Not that $x_n = x_{-n}$.
$endgroup$
– kimchi lover
Jan 11 at 21:31
$begingroup$
@kimchilover Okay see, mixing the meaning of "symmetric".
$endgroup$
– mavavilj
Jan 11 at 21:33
add a comment |
$begingroup$
How can $sum_{n=1}^{infty} 2^{-n} frac{|x_n-z_n|}{1+|x_n-z_n|}$ be symmetric?
Problem:
Consider that the sequences are s.t. they obey:
$(x_n)$ follows $f(x)=x^3$
$(z_n)$ follows $f(x)=x^2$
Then the graph of this is unsymmetric.
functional-analysis
$endgroup$
How can $sum_{n=1}^{infty} 2^{-n} frac{|x_n-z_n|}{1+|x_n-z_n|}$ be symmetric?
Problem:
Consider that the sequences are s.t. they obey:
$(x_n)$ follows $f(x)=x^3$
$(z_n)$ follows $f(x)=x^2$
Then the graph of this is unsymmetric.
functional-analysis
functional-analysis
asked Jan 11 at 21:28
mavaviljmavavilj
2,76211036
2,76211036
1
$begingroup$
It is symmetric in the sense that if your interchange the roles of $x_n$ and $y_n$, you get the same value. Not that $x_n = x_{-n}$.
$endgroup$
– kimchi lover
Jan 11 at 21:31
$begingroup$
@kimchilover Okay see, mixing the meaning of "symmetric".
$endgroup$
– mavavilj
Jan 11 at 21:33
add a comment |
1
$begingroup$
It is symmetric in the sense that if your interchange the roles of $x_n$ and $y_n$, you get the same value. Not that $x_n = x_{-n}$.
$endgroup$
– kimchi lover
Jan 11 at 21:31
$begingroup$
@kimchilover Okay see, mixing the meaning of "symmetric".
$endgroup$
– mavavilj
Jan 11 at 21:33
1
1
$begingroup$
It is symmetric in the sense that if your interchange the roles of $x_n$ and $y_n$, you get the same value. Not that $x_n = x_{-n}$.
$endgroup$
– kimchi lover
Jan 11 at 21:31
$begingroup$
It is symmetric in the sense that if your interchange the roles of $x_n$ and $y_n$, you get the same value. Not that $x_n = x_{-n}$.
$endgroup$
– kimchi lover
Jan 11 at 21:31
$begingroup$
@kimchilover Okay see, mixing the meaning of "symmetric".
$endgroup$
– mavavilj
Jan 11 at 21:33
$begingroup$
@kimchilover Okay see, mixing the meaning of "symmetric".
$endgroup$
– mavavilj
Jan 11 at 21:33
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070363%2fhow-can-sum-n-1-infty-2-n-fracx-n-z-n1x-n-z-n-be-symmetric%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070363%2fhow-can-sum-n-1-infty-2-n-fracx-n-z-n1x-n-z-n-be-symmetric%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It is symmetric in the sense that if your interchange the roles of $x_n$ and $y_n$, you get the same value. Not that $x_n = x_{-n}$.
$endgroup$
– kimchi lover
Jan 11 at 21:31
$begingroup$
@kimchilover Okay see, mixing the meaning of "symmetric".
$endgroup$
– mavavilj
Jan 11 at 21:33