How to find solution to a non-homogenous system of differential equations
$begingroup$
Let $X'=AX + b(t)$ be a system of differential equations where: $X(t) = (x_1(t),...,x_n(t))$, $Ainmathcal M_n({mathbb{R}})$ and $b(t) = (b_1(t),..,b_n(t))$.
How do I solve this system using the variations of constants method?
I know that if $M(t)=(x_1(t)|....|x_n(t))$ a matrix of fundamental solutions and
$$X(t)=c_1(t)x_1(t)+...+c_n(t)x_n(t)=M(t)C(t)$$
where $C(t) = (c_1(t)|..|c_n(t))$
And that $C(t)$ verifies $C'(t)=M^{-1}(t)b(t)$
If I have an example like:
$$left{begin{array}{l}x'=x+y-cos t\y'=-2x-y+sin t+cos tend{array}right.$$
How do I actually solve it?
ordinary-differential-equations systems-of-equations
$endgroup$
add a comment |
$begingroup$
Let $X'=AX + b(t)$ be a system of differential equations where: $X(t) = (x_1(t),...,x_n(t))$, $Ainmathcal M_n({mathbb{R}})$ and $b(t) = (b_1(t),..,b_n(t))$.
How do I solve this system using the variations of constants method?
I know that if $M(t)=(x_1(t)|....|x_n(t))$ a matrix of fundamental solutions and
$$X(t)=c_1(t)x_1(t)+...+c_n(t)x_n(t)=M(t)C(t)$$
where $C(t) = (c_1(t)|..|c_n(t))$
And that $C(t)$ verifies $C'(t)=M^{-1}(t)b(t)$
If I have an example like:
$$left{begin{array}{l}x'=x+y-cos t\y'=-2x-y+sin t+cos tend{array}right.$$
How do I actually solve it?
ordinary-differential-equations systems-of-equations
$endgroup$
add a comment |
$begingroup$
Let $X'=AX + b(t)$ be a system of differential equations where: $X(t) = (x_1(t),...,x_n(t))$, $Ainmathcal M_n({mathbb{R}})$ and $b(t) = (b_1(t),..,b_n(t))$.
How do I solve this system using the variations of constants method?
I know that if $M(t)=(x_1(t)|....|x_n(t))$ a matrix of fundamental solutions and
$$X(t)=c_1(t)x_1(t)+...+c_n(t)x_n(t)=M(t)C(t)$$
where $C(t) = (c_1(t)|..|c_n(t))$
And that $C(t)$ verifies $C'(t)=M^{-1}(t)b(t)$
If I have an example like:
$$left{begin{array}{l}x'=x+y-cos t\y'=-2x-y+sin t+cos tend{array}right.$$
How do I actually solve it?
ordinary-differential-equations systems-of-equations
$endgroup$
Let $X'=AX + b(t)$ be a system of differential equations where: $X(t) = (x_1(t),...,x_n(t))$, $Ainmathcal M_n({mathbb{R}})$ and $b(t) = (b_1(t),..,b_n(t))$.
How do I solve this system using the variations of constants method?
I know that if $M(t)=(x_1(t)|....|x_n(t))$ a matrix of fundamental solutions and
$$X(t)=c_1(t)x_1(t)+...+c_n(t)x_n(t)=M(t)C(t)$$
where $C(t) = (c_1(t)|..|c_n(t))$
And that $C(t)$ verifies $C'(t)=M^{-1}(t)b(t)$
If I have an example like:
$$left{begin{array}{l}x'=x+y-cos t\y'=-2x-y+sin t+cos tend{array}right.$$
How do I actually solve it?
ordinary-differential-equations systems-of-equations
ordinary-differential-equations systems-of-equations
asked Jan 14 at 14:43


C. CristiC. Cristi
1,629218
1,629218
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.
You write your example in the form
begin{equation}
boldsymbol{dot{x}} = left( begin{array}{c}
dot{x}\
dot{y}
end{array}
right) = left( begin{array}{cc}
1 & 1\
-2 & -1
end{array}
right) left( begin{array}{c}
x\
y
end{array}
right) + left( begin{array}{c}
-cos(t)\
sin(t)+cos(t)
end{array}
right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
end{equation}
which has the general solution
begin{equation}
boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
end{equation}
where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
begin{equation}
boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
cos(t) + sin(t) & sin(t)\
-2sin(t) & cos(t) - sin(t)
end{array}
right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
C_1 - t\
C_2 + t
end{array}
right),
end{equation}
$C_1, C_2 in mathbb{R}$, and finally
begin{equation}
boldsymbol{x}(t) = left( begin{array}{c}
x(t)\
y(t)
end{array}
right) = left( begin{array}{c}
-t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
end{array}
right).
end{equation}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073306%2fhow-to-find-solution-to-a-non-homogenous-system-of-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.
You write your example in the form
begin{equation}
boldsymbol{dot{x}} = left( begin{array}{c}
dot{x}\
dot{y}
end{array}
right) = left( begin{array}{cc}
1 & 1\
-2 & -1
end{array}
right) left( begin{array}{c}
x\
y
end{array}
right) + left( begin{array}{c}
-cos(t)\
sin(t)+cos(t)
end{array}
right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
end{equation}
which has the general solution
begin{equation}
boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
end{equation}
where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
begin{equation}
boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
cos(t) + sin(t) & sin(t)\
-2sin(t) & cos(t) - sin(t)
end{array}
right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
C_1 - t\
C_2 + t
end{array}
right),
end{equation}
$C_1, C_2 in mathbb{R}$, and finally
begin{equation}
boldsymbol{x}(t) = left( begin{array}{c}
x(t)\
y(t)
end{array}
right) = left( begin{array}{c}
-t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
end{array}
right).
end{equation}
$endgroup$
add a comment |
$begingroup$
You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.
You write your example in the form
begin{equation}
boldsymbol{dot{x}} = left( begin{array}{c}
dot{x}\
dot{y}
end{array}
right) = left( begin{array}{cc}
1 & 1\
-2 & -1
end{array}
right) left( begin{array}{c}
x\
y
end{array}
right) + left( begin{array}{c}
-cos(t)\
sin(t)+cos(t)
end{array}
right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
end{equation}
which has the general solution
begin{equation}
boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
end{equation}
where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
begin{equation}
boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
cos(t) + sin(t) & sin(t)\
-2sin(t) & cos(t) - sin(t)
end{array}
right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
C_1 - t\
C_2 + t
end{array}
right),
end{equation}
$C_1, C_2 in mathbb{R}$, and finally
begin{equation}
boldsymbol{x}(t) = left( begin{array}{c}
x(t)\
y(t)
end{array}
right) = left( begin{array}{c}
-t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
end{array}
right).
end{equation}
$endgroup$
add a comment |
$begingroup$
You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.
You write your example in the form
begin{equation}
boldsymbol{dot{x}} = left( begin{array}{c}
dot{x}\
dot{y}
end{array}
right) = left( begin{array}{cc}
1 & 1\
-2 & -1
end{array}
right) left( begin{array}{c}
x\
y
end{array}
right) + left( begin{array}{c}
-cos(t)\
sin(t)+cos(t)
end{array}
right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
end{equation}
which has the general solution
begin{equation}
boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
end{equation}
where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
begin{equation}
boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
cos(t) + sin(t) & sin(t)\
-2sin(t) & cos(t) - sin(t)
end{array}
right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
C_1 - t\
C_2 + t
end{array}
right),
end{equation}
$C_1, C_2 in mathbb{R}$, and finally
begin{equation}
boldsymbol{x}(t) = left( begin{array}{c}
x(t)\
y(t)
end{array}
right) = left( begin{array}{c}
-t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
end{array}
right).
end{equation}
$endgroup$
You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.
You write your example in the form
begin{equation}
boldsymbol{dot{x}} = left( begin{array}{c}
dot{x}\
dot{y}
end{array}
right) = left( begin{array}{cc}
1 & 1\
-2 & -1
end{array}
right) left( begin{array}{c}
x\
y
end{array}
right) + left( begin{array}{c}
-cos(t)\
sin(t)+cos(t)
end{array}
right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
end{equation}
which has the general solution
begin{equation}
boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
end{equation}
where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
begin{equation}
boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
cos(t) + sin(t) & sin(t)\
-2sin(t) & cos(t) - sin(t)
end{array}
right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
C_1 - t\
C_2 + t
end{array}
right),
end{equation}
$C_1, C_2 in mathbb{R}$, and finally
begin{equation}
boldsymbol{x}(t) = left( begin{array}{c}
x(t)\
y(t)
end{array}
right) = left( begin{array}{c}
-t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
end{array}
right).
end{equation}
edited Jan 15 at 5:54
answered Jan 15 at 5:45
ChristophChristoph
58116
58116
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073306%2fhow-to-find-solution-to-a-non-homogenous-system-of-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown