How to find solution to a non-homogenous system of differential equations












0












$begingroup$



Let $X'=AX + b(t)$ be a system of differential equations where: $X(t) = (x_1(t),...,x_n(t))$, $Ainmathcal M_n({mathbb{R}})$ and $b(t) = (b_1(t),..,b_n(t))$.




How do I solve this system using the variations of constants method?



I know that if $M(t)=(x_1(t)|....|x_n(t))$ a matrix of fundamental solutions and



$$X(t)=c_1(t)x_1(t)+...+c_n(t)x_n(t)=M(t)C(t)$$



where $C(t) = (c_1(t)|..|c_n(t))$



And that $C(t)$ verifies $C'(t)=M^{-1}(t)b(t)$



If I have an example like:



$$left{begin{array}{l}x'=x+y-cos t\y'=-2x-y+sin t+cos tend{array}right.$$



How do I actually solve it?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$



    Let $X'=AX + b(t)$ be a system of differential equations where: $X(t) = (x_1(t),...,x_n(t))$, $Ainmathcal M_n({mathbb{R}})$ and $b(t) = (b_1(t),..,b_n(t))$.




    How do I solve this system using the variations of constants method?



    I know that if $M(t)=(x_1(t)|....|x_n(t))$ a matrix of fundamental solutions and



    $$X(t)=c_1(t)x_1(t)+...+c_n(t)x_n(t)=M(t)C(t)$$



    where $C(t) = (c_1(t)|..|c_n(t))$



    And that $C(t)$ verifies $C'(t)=M^{-1}(t)b(t)$



    If I have an example like:



    $$left{begin{array}{l}x'=x+y-cos t\y'=-2x-y+sin t+cos tend{array}right.$$



    How do I actually solve it?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$



      Let $X'=AX + b(t)$ be a system of differential equations where: $X(t) = (x_1(t),...,x_n(t))$, $Ainmathcal M_n({mathbb{R}})$ and $b(t) = (b_1(t),..,b_n(t))$.




      How do I solve this system using the variations of constants method?



      I know that if $M(t)=(x_1(t)|....|x_n(t))$ a matrix of fundamental solutions and



      $$X(t)=c_1(t)x_1(t)+...+c_n(t)x_n(t)=M(t)C(t)$$



      where $C(t) = (c_1(t)|..|c_n(t))$



      And that $C(t)$ verifies $C'(t)=M^{-1}(t)b(t)$



      If I have an example like:



      $$left{begin{array}{l}x'=x+y-cos t\y'=-2x-y+sin t+cos tend{array}right.$$



      How do I actually solve it?










      share|cite|improve this question









      $endgroup$





      Let $X'=AX + b(t)$ be a system of differential equations where: $X(t) = (x_1(t),...,x_n(t))$, $Ainmathcal M_n({mathbb{R}})$ and $b(t) = (b_1(t),..,b_n(t))$.




      How do I solve this system using the variations of constants method?



      I know that if $M(t)=(x_1(t)|....|x_n(t))$ a matrix of fundamental solutions and



      $$X(t)=c_1(t)x_1(t)+...+c_n(t)x_n(t)=M(t)C(t)$$



      where $C(t) = (c_1(t)|..|c_n(t))$



      And that $C(t)$ verifies $C'(t)=M^{-1}(t)b(t)$



      If I have an example like:



      $$left{begin{array}{l}x'=x+y-cos t\y'=-2x-y+sin t+cos tend{array}right.$$



      How do I actually solve it?







      ordinary-differential-equations systems-of-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 14 at 14:43









      C. CristiC. Cristi

      1,629218




      1,629218






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.



          You write your example in the form
          begin{equation}
          boldsymbol{dot{x}} = left( begin{array}{c}
          dot{x}\
          dot{y}
          end{array}
          right) = left( begin{array}{cc}
          1 & 1\
          -2 & -1
          end{array}
          right) left( begin{array}{c}
          x\
          y
          end{array}
          right) + left( begin{array}{c}
          -cos(t)\
          sin(t)+cos(t)
          end{array}
          right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
          end{equation}

          which has the general solution
          begin{equation}
          boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
          end{equation}

          where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
          begin{equation}
          boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
          cos(t) + sin(t) & sin(t)\
          -2sin(t) & cos(t) - sin(t)
          end{array}
          right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
          C_1 - t\
          C_2 + t
          end{array}
          right),
          end{equation}

          $C_1, C_2 in mathbb{R}$, and finally
          begin{equation}
          boldsymbol{x}(t) = left( begin{array}{c}
          x(t)\
          y(t)
          end{array}
          right) = left( begin{array}{c}
          -t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
          t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
          end{array}
          right).
          end{equation}






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073306%2fhow-to-find-solution-to-a-non-homogenous-system-of-differential-equations%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.



            You write your example in the form
            begin{equation}
            boldsymbol{dot{x}} = left( begin{array}{c}
            dot{x}\
            dot{y}
            end{array}
            right) = left( begin{array}{cc}
            1 & 1\
            -2 & -1
            end{array}
            right) left( begin{array}{c}
            x\
            y
            end{array}
            right) + left( begin{array}{c}
            -cos(t)\
            sin(t)+cos(t)
            end{array}
            right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
            end{equation}

            which has the general solution
            begin{equation}
            boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
            end{equation}

            where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
            begin{equation}
            boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
            cos(t) + sin(t) & sin(t)\
            -2sin(t) & cos(t) - sin(t)
            end{array}
            right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
            C_1 - t\
            C_2 + t
            end{array}
            right),
            end{equation}

            $C_1, C_2 in mathbb{R}$, and finally
            begin{equation}
            boldsymbol{x}(t) = left( begin{array}{c}
            x(t)\
            y(t)
            end{array}
            right) = left( begin{array}{c}
            -t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
            t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
            end{array}
            right).
            end{equation}






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.



              You write your example in the form
              begin{equation}
              boldsymbol{dot{x}} = left( begin{array}{c}
              dot{x}\
              dot{y}
              end{array}
              right) = left( begin{array}{cc}
              1 & 1\
              -2 & -1
              end{array}
              right) left( begin{array}{c}
              x\
              y
              end{array}
              right) + left( begin{array}{c}
              -cos(t)\
              sin(t)+cos(t)
              end{array}
              right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
              end{equation}

              which has the general solution
              begin{equation}
              boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
              end{equation}

              where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
              begin{equation}
              boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
              cos(t) + sin(t) & sin(t)\
              -2sin(t) & cos(t) - sin(t)
              end{array}
              right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
              C_1 - t\
              C_2 + t
              end{array}
              right),
              end{equation}

              $C_1, C_2 in mathbb{R}$, and finally
              begin{equation}
              boldsymbol{x}(t) = left( begin{array}{c}
              x(t)\
              y(t)
              end{array}
              right) = left( begin{array}{c}
              -t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
              t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
              end{array}
              right).
              end{equation}






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.



                You write your example in the form
                begin{equation}
                boldsymbol{dot{x}} = left( begin{array}{c}
                dot{x}\
                dot{y}
                end{array}
                right) = left( begin{array}{cc}
                1 & 1\
                -2 & -1
                end{array}
                right) left( begin{array}{c}
                x\
                y
                end{array}
                right) + left( begin{array}{c}
                -cos(t)\
                sin(t)+cos(t)
                end{array}
                right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
                end{equation}

                which has the general solution
                begin{equation}
                boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
                end{equation}

                where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
                begin{equation}
                boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
                cos(t) + sin(t) & sin(t)\
                -2sin(t) & cos(t) - sin(t)
                end{array}
                right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
                C_1 - t\
                C_2 + t
                end{array}
                right),
                end{equation}

                $C_1, C_2 in mathbb{R}$, and finally
                begin{equation}
                boldsymbol{x}(t) = left( begin{array}{c}
                x(t)\
                y(t)
                end{array}
                right) = left( begin{array}{c}
                -t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
                t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
                end{array}
                right).
                end{equation}






                share|cite|improve this answer











                $endgroup$



                You were almost done, as you can simply integrate the function $M^{-1}(t)b(t)$ over $t$ to obtain the function $C(t)$, up to constants of integration.



                You write your example in the form
                begin{equation}
                boldsymbol{dot{x}} = left( begin{array}{c}
                dot{x}\
                dot{y}
                end{array}
                right) = left( begin{array}{cc}
                1 & 1\
                -2 & -1
                end{array}
                right) left( begin{array}{c}
                x\
                y
                end{array}
                right) + left( begin{array}{c}
                -cos(t)\
                sin(t)+cos(t)
                end{array}
                right) = boldsymbol{underline{A}} boldsymbol{x} + boldsymbol{b}(t),
                end{equation}

                which has the general solution
                begin{equation}
                boldsymbol{x}(t) = boldsymbol{underline{M}}(t) int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t,
                end{equation}

                where $boldsymbol{underline{M}}(t) := e^{t boldsymbol{underline{A}}}$ is a matrix exponential (with inverse $boldsymbol{underline{M}}^{-1}(t) = e^{-t boldsymbol{underline{A}}}$). The constants of integration are contained in the indefinite integral. We obtain
                begin{equation}
                boldsymbol{underline{M}}(t) = e^{tboldsymbol{underline{A}}} = left( begin{array}{cc}
                cos(t) + sin(t) & sin(t)\
                -2sin(t) & cos(t) - sin(t)
                end{array}
                right), quad int boldsymbol{underline{M}}^{-1}(t) boldsymbol{b}(t) , mathrm{d}t = left( begin{array}{c}
                C_1 - t\
                C_2 + t
                end{array}
                right),
                end{equation}

                $C_1, C_2 in mathbb{R}$, and finally
                begin{equation}
                boldsymbol{x}(t) = left( begin{array}{c}
                x(t)\
                y(t)
                end{array}
                right) = left( begin{array}{c}
                -t cos(t) + C_1 (cos(t) + sin(t)) + C_2 sin(t)\
                t cos(t) + t sin(t) - 2 C_1 sin(t) + C_2 (cos(t)-sin(t))
                end{array}
                right).
                end{equation}







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 15 at 5:54

























                answered Jan 15 at 5:45









                ChristophChristoph

                58116




                58116






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073306%2fhow-to-find-solution-to-a-non-homogenous-system-of-differential-equations%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith