How to use pivot to generate a single-row matrix?












1















I need to pivot the following two-column dataframe to one-row one (long to wide).



+--------+-----+
| udate| cc|
+--------+-----+
|20090622| 458|
|20090624|31068|
|20090626| 151|
|20090629| 148|
|20090914| 453|
+--------+-----+


I need it in this format:



+--------+------------+----------+----------+
| udate| 20090622 | 20090624 | 20090626 |
+--------+------------+----------+----------+
| cc | 458| 31068 | 151 |etc


I ran this:



result_df.groupBy($"udate").pivot("udate").agg(max($"cc")).show()


but ended up with a matrix of all rows transposed to all columns:



+--------+--------+--------+--------+--------+--------+---
| udate|20090622|20090624|20090626|20090629|20090703|200
+--------+--------+--------+--------+--------+--------+---
|20090622| 458| null| null| null| null|
|20090624| null| 31068| null| null| null|
|20090626| null| null| 151| null| null|
|20090629| null| null| null| 148| null|
|20090703| null| null| null| null| 362|
|20090704| null| null| null| null| null|
|20090715| null| null| null| null| null|
|20090718| null| null| null| null| null|
|20090721| null| null| null| null| null|
|20090722| null| null| null| null| null|


I expected that pivoting a one-column dataset should result in a one-row pivoted dataset.



How can I modify the pivot command so that the result set is pivoted to one row?










share|improve this question





























    1















    I need to pivot the following two-column dataframe to one-row one (long to wide).



    +--------+-----+
    | udate| cc|
    +--------+-----+
    |20090622| 458|
    |20090624|31068|
    |20090626| 151|
    |20090629| 148|
    |20090914| 453|
    +--------+-----+


    I need it in this format:



    +--------+------------+----------+----------+
    | udate| 20090622 | 20090624 | 20090626 |
    +--------+------------+----------+----------+
    | cc | 458| 31068 | 151 |etc


    I ran this:



    result_df.groupBy($"udate").pivot("udate").agg(max($"cc")).show()


    but ended up with a matrix of all rows transposed to all columns:



    +--------+--------+--------+--------+--------+--------+---
    | udate|20090622|20090624|20090626|20090629|20090703|200
    +--------+--------+--------+--------+--------+--------+---
    |20090622| 458| null| null| null| null|
    |20090624| null| 31068| null| null| null|
    |20090626| null| null| 151| null| null|
    |20090629| null| null| null| 148| null|
    |20090703| null| null| null| null| 362|
    |20090704| null| null| null| null| null|
    |20090715| null| null| null| null| null|
    |20090718| null| null| null| null| null|
    |20090721| null| null| null| null| null|
    |20090722| null| null| null| null| null|


    I expected that pivoting a one-column dataset should result in a one-row pivoted dataset.



    How can I modify the pivot command so that the result set is pivoted to one row?










    share|improve this question



























      1












      1








      1


      1






      I need to pivot the following two-column dataframe to one-row one (long to wide).



      +--------+-----+
      | udate| cc|
      +--------+-----+
      |20090622| 458|
      |20090624|31068|
      |20090626| 151|
      |20090629| 148|
      |20090914| 453|
      +--------+-----+


      I need it in this format:



      +--------+------------+----------+----------+
      | udate| 20090622 | 20090624 | 20090626 |
      +--------+------------+----------+----------+
      | cc | 458| 31068 | 151 |etc


      I ran this:



      result_df.groupBy($"udate").pivot("udate").agg(max($"cc")).show()


      but ended up with a matrix of all rows transposed to all columns:



      +--------+--------+--------+--------+--------+--------+---
      | udate|20090622|20090624|20090626|20090629|20090703|200
      +--------+--------+--------+--------+--------+--------+---
      |20090622| 458| null| null| null| null|
      |20090624| null| 31068| null| null| null|
      |20090626| null| null| 151| null| null|
      |20090629| null| null| null| 148| null|
      |20090703| null| null| null| null| 362|
      |20090704| null| null| null| null| null|
      |20090715| null| null| null| null| null|
      |20090718| null| null| null| null| null|
      |20090721| null| null| null| null| null|
      |20090722| null| null| null| null| null|


      I expected that pivoting a one-column dataset should result in a one-row pivoted dataset.



      How can I modify the pivot command so that the result set is pivoted to one row?










      share|improve this question
















      I need to pivot the following two-column dataframe to one-row one (long to wide).



      +--------+-----+
      | udate| cc|
      +--------+-----+
      |20090622| 458|
      |20090624|31068|
      |20090626| 151|
      |20090629| 148|
      |20090914| 453|
      +--------+-----+


      I need it in this format:



      +--------+------------+----------+----------+
      | udate| 20090622 | 20090624 | 20090626 |
      +--------+------------+----------+----------+
      | cc | 458| 31068 | 151 |etc


      I ran this:



      result_df.groupBy($"udate").pivot("udate").agg(max($"cc")).show()


      but ended up with a matrix of all rows transposed to all columns:



      +--------+--------+--------+--------+--------+--------+---
      | udate|20090622|20090624|20090626|20090629|20090703|200
      +--------+--------+--------+--------+--------+--------+---
      |20090622| 458| null| null| null| null|
      |20090624| null| 31068| null| null| null|
      |20090626| null| null| 151| null| null|
      |20090629| null| null| null| 148| null|
      |20090703| null| null| null| null| 362|
      |20090704| null| null| null| null| null|
      |20090715| null| null| null| null| null|
      |20090718| null| null| null| null| null|
      |20090721| null| null| null| null| null|
      |20090722| null| null| null| null| null|


      I expected that pivoting a one-column dataset should result in a one-row pivoted dataset.



      How can I modify the pivot command so that the result set is pivoted to one row?







      apache-spark apache-spark-sql






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 6 '18 at 22:16









      Jacek Laskowski

      44.7k18132268




      44.7k18132268










      asked Nov 2 '16 at 0:56









      MarkTeehanMarkTeehan

      113212




      113212
























          1 Answer
          1






          active

          oldest

          votes


















          2














          tl;dr In Spark 2.4.0 it simply boils down to using groupBy alone.



          val solution = d.groupBy().pivot("udate").agg(first("cc"))
          scala> solution.show
          +--------+--------+--------+--------+--------+
          |20090622|20090624|20090626|20090629|20090914|
          +--------+--------+--------+--------+--------+
          | 458| 31068| 151| 148| 453|
          +--------+--------+--------+--------+--------+


          If you really need the first column with the names just use withColumn and you're done.



          val betterSolution = solution.select(lit("cc") as "udate", $"*")
          scala> betterSolution.show
          +-----+--------+--------+--------+--------+--------+
          |udate|20090622|20090624|20090626|20090629|20090914|
          +-----+--------+--------+--------+--------+--------+
          | cc| 458| 31068| 151| 148| 453|
          +-----+--------+--------+--------+--------+--------+





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f40370890%2fhow-to-use-pivot-to-generate-a-single-row-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            tl;dr In Spark 2.4.0 it simply boils down to using groupBy alone.



            val solution = d.groupBy().pivot("udate").agg(first("cc"))
            scala> solution.show
            +--------+--------+--------+--------+--------+
            |20090622|20090624|20090626|20090629|20090914|
            +--------+--------+--------+--------+--------+
            | 458| 31068| 151| 148| 453|
            +--------+--------+--------+--------+--------+


            If you really need the first column with the names just use withColumn and you're done.



            val betterSolution = solution.select(lit("cc") as "udate", $"*")
            scala> betterSolution.show
            +-----+--------+--------+--------+--------+--------+
            |udate|20090622|20090624|20090626|20090629|20090914|
            +-----+--------+--------+--------+--------+--------+
            | cc| 458| 31068| 151| 148| 453|
            +-----+--------+--------+--------+--------+--------+





            share|improve this answer




























              2














              tl;dr In Spark 2.4.0 it simply boils down to using groupBy alone.



              val solution = d.groupBy().pivot("udate").agg(first("cc"))
              scala> solution.show
              +--------+--------+--------+--------+--------+
              |20090622|20090624|20090626|20090629|20090914|
              +--------+--------+--------+--------+--------+
              | 458| 31068| 151| 148| 453|
              +--------+--------+--------+--------+--------+


              If you really need the first column with the names just use withColumn and you're done.



              val betterSolution = solution.select(lit("cc") as "udate", $"*")
              scala> betterSolution.show
              +-----+--------+--------+--------+--------+--------+
              |udate|20090622|20090624|20090626|20090629|20090914|
              +-----+--------+--------+--------+--------+--------+
              | cc| 458| 31068| 151| 148| 453|
              +-----+--------+--------+--------+--------+--------+





              share|improve this answer


























                2












                2








                2







                tl;dr In Spark 2.4.0 it simply boils down to using groupBy alone.



                val solution = d.groupBy().pivot("udate").agg(first("cc"))
                scala> solution.show
                +--------+--------+--------+--------+--------+
                |20090622|20090624|20090626|20090629|20090914|
                +--------+--------+--------+--------+--------+
                | 458| 31068| 151| 148| 453|
                +--------+--------+--------+--------+--------+


                If you really need the first column with the names just use withColumn and you're done.



                val betterSolution = solution.select(lit("cc") as "udate", $"*")
                scala> betterSolution.show
                +-----+--------+--------+--------+--------+--------+
                |udate|20090622|20090624|20090626|20090629|20090914|
                +-----+--------+--------+--------+--------+--------+
                | cc| 458| 31068| 151| 148| 453|
                +-----+--------+--------+--------+--------+--------+





                share|improve this answer













                tl;dr In Spark 2.4.0 it simply boils down to using groupBy alone.



                val solution = d.groupBy().pivot("udate").agg(first("cc"))
                scala> solution.show
                +--------+--------+--------+--------+--------+
                |20090622|20090624|20090626|20090629|20090914|
                +--------+--------+--------+--------+--------+
                | 458| 31068| 151| 148| 453|
                +--------+--------+--------+--------+--------+


                If you really need the first column with the names just use withColumn and you're done.



                val betterSolution = solution.select(lit("cc") as "udate", $"*")
                scala> betterSolution.show
                +-----+--------+--------+--------+--------+--------+
                |udate|20090622|20090624|20090626|20090629|20090914|
                +-----+--------+--------+--------+--------+--------+
                | cc| 458| 31068| 151| 148| 453|
                +-----+--------+--------+--------+--------+--------+






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 6 '18 at 22:13









                Jacek LaskowskiJacek Laskowski

                44.7k18132268




                44.7k18132268
































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f40370890%2fhow-to-use-pivot-to-generate-a-single-row-matrix%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                    How to fix TextFormField cause rebuild widget in Flutter