If $P(A cup B cup C) = 1$, $P(B) = 2P(A) $, $P(C) = 3P(A) $, $P(A cap B) = P(A cap C) = P(B cap C) $, then...
$begingroup$
We have ($P$ is probability):
$P(A cup B cup C) = 1$ ; $P(B) = 2P(A) $ ; $P(C) = 3P(A) $ and $P(A cap B) = P(A cap C) = P(B cap C) $. Prove that $P(A) le frac{1}{4} $.
Well, I tried with the fact that $ 1 = P(A cup B cup C) = 6P(A) - 3P(A cap B) + P(A cap B cap C) $ but I got stuck... Could anyone help me, please?
probability
$endgroup$
add a comment |
$begingroup$
We have ($P$ is probability):
$P(A cup B cup C) = 1$ ; $P(B) = 2P(A) $ ; $P(C) = 3P(A) $ and $P(A cap B) = P(A cap C) = P(B cap C) $. Prove that $P(A) le frac{1}{4} $.
Well, I tried with the fact that $ 1 = P(A cup B cup C) = 6P(A) - 3P(A cap B) + P(A cap B cap C) $ but I got stuck... Could anyone help me, please?
probability
$endgroup$
add a comment |
$begingroup$
We have ($P$ is probability):
$P(A cup B cup C) = 1$ ; $P(B) = 2P(A) $ ; $P(C) = 3P(A) $ and $P(A cap B) = P(A cap C) = P(B cap C) $. Prove that $P(A) le frac{1}{4} $.
Well, I tried with the fact that $ 1 = P(A cup B cup C) = 6P(A) - 3P(A cap B) + P(A cap B cap C) $ but I got stuck... Could anyone help me, please?
probability
$endgroup$
We have ($P$ is probability):
$P(A cup B cup C) = 1$ ; $P(B) = 2P(A) $ ; $P(C) = 3P(A) $ and $P(A cap B) = P(A cap C) = P(B cap C) $. Prove that $P(A) le frac{1}{4} $.
Well, I tried with the fact that $ 1 = P(A cup B cup C) = 6P(A) - 3P(A cap B) + P(A cap B cap C) $ but I got stuck... Could anyone help me, please?
probability
probability
edited Jan 11 at 22:00
Did
248k23223460
248k23223460
asked Feb 19 '13 at 19:56
AnneAnne
732918
732918
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $mathbb P(A)=a$, then $mathbb P(B)=2a$ and $mathbb P(C)=3a$. Hence $mathbb P(Bcap C)geqslant mathbb P(B)+mathbb P(C)-1$, that is, $mathbb P(Bcap C)geqslant5a-1$. By hypothesis, $mathbb P(Acap B)=mathbb P(Bcap C)$ hence $mathbb P(Acap B)geqslant5a-1$. But $mathbb P(Acap B)leqslant mathbb P(A)=a$ hence $ageqslant5a-1$, that is, $mathbb P(A)=aleqslantfrac14$.
Note: This does not use the hypotheses on $mathbb P(Acup Bcup C)$ and $mathbb P(Acap C)$.
$endgroup$
add a comment |
$begingroup$
This solution is quite possibly messier than necessary, but it’s what first occurred to me. For convenience let $x=Pbig((Acap B)setminus Cbig)$ and $y=P(Acap Bcap C)$. Let $a=P(A)-2x-y$, $b=P(B)-2x-y$, and $c=P(C)-2x-y$; these are the probabilities of $Asetminus(Bcup C)$, $Bsetminus(Acup C)$, and $Csetminus(Acup B)$, respectively. (A Venn diagram is helpful here.)
Now $$b+2x+y=2(a+2x+y)=2a+4x+2y;,$$ so $b=2a+2x+y$. Similarly, $$c+2x+y=3(a+2x+y)=3a+6x+3y;,$$ so $c=3a+4x+2y$. Then
$$begin{align*}
1&=P(Acup Bcup C)\
&=a+b+c+3x+y\
&=6a+9x+4y\
&=4(a+2x+y)+2a+x\
&=4P(A)+2a+x;.
end{align*}$$
Since $2a+xge 0$, we must have $P(A)le frac{1}{4}$.
$endgroup$
$begingroup$
But I guess $a= P(A) -2x+y$ and it changes a lot...
$endgroup$
– Anne
Feb 19 '13 at 20:58
$begingroup$
@Anne: Sorry: I typoed the definition of $x$. You’ll see that everything is correct if $x$ is the probability of $(Acap B)setminus C$, as it was intended to be.
$endgroup$
– Brian M. Scott
Feb 20 '13 at 0:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f308386%2fif-pa-cup-b-cup-c-1-pb-2pa-pc-3pa-pa-cap-b-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $mathbb P(A)=a$, then $mathbb P(B)=2a$ and $mathbb P(C)=3a$. Hence $mathbb P(Bcap C)geqslant mathbb P(B)+mathbb P(C)-1$, that is, $mathbb P(Bcap C)geqslant5a-1$. By hypothesis, $mathbb P(Acap B)=mathbb P(Bcap C)$ hence $mathbb P(Acap B)geqslant5a-1$. But $mathbb P(Acap B)leqslant mathbb P(A)=a$ hence $ageqslant5a-1$, that is, $mathbb P(A)=aleqslantfrac14$.
Note: This does not use the hypotheses on $mathbb P(Acup Bcup C)$ and $mathbb P(Acap C)$.
$endgroup$
add a comment |
$begingroup$
Let $mathbb P(A)=a$, then $mathbb P(B)=2a$ and $mathbb P(C)=3a$. Hence $mathbb P(Bcap C)geqslant mathbb P(B)+mathbb P(C)-1$, that is, $mathbb P(Bcap C)geqslant5a-1$. By hypothesis, $mathbb P(Acap B)=mathbb P(Bcap C)$ hence $mathbb P(Acap B)geqslant5a-1$. But $mathbb P(Acap B)leqslant mathbb P(A)=a$ hence $ageqslant5a-1$, that is, $mathbb P(A)=aleqslantfrac14$.
Note: This does not use the hypotheses on $mathbb P(Acup Bcup C)$ and $mathbb P(Acap C)$.
$endgroup$
add a comment |
$begingroup$
Let $mathbb P(A)=a$, then $mathbb P(B)=2a$ and $mathbb P(C)=3a$. Hence $mathbb P(Bcap C)geqslant mathbb P(B)+mathbb P(C)-1$, that is, $mathbb P(Bcap C)geqslant5a-1$. By hypothesis, $mathbb P(Acap B)=mathbb P(Bcap C)$ hence $mathbb P(Acap B)geqslant5a-1$. But $mathbb P(Acap B)leqslant mathbb P(A)=a$ hence $ageqslant5a-1$, that is, $mathbb P(A)=aleqslantfrac14$.
Note: This does not use the hypotheses on $mathbb P(Acup Bcup C)$ and $mathbb P(Acap C)$.
$endgroup$
Let $mathbb P(A)=a$, then $mathbb P(B)=2a$ and $mathbb P(C)=3a$. Hence $mathbb P(Bcap C)geqslant mathbb P(B)+mathbb P(C)-1$, that is, $mathbb P(Bcap C)geqslant5a-1$. By hypothesis, $mathbb P(Acap B)=mathbb P(Bcap C)$ hence $mathbb P(Acap B)geqslant5a-1$. But $mathbb P(Acap B)leqslant mathbb P(A)=a$ hence $ageqslant5a-1$, that is, $mathbb P(A)=aleqslantfrac14$.
Note: This does not use the hypotheses on $mathbb P(Acup Bcup C)$ and $mathbb P(Acap C)$.
answered Feb 19 '13 at 21:27
DidDid
248k23223460
248k23223460
add a comment |
add a comment |
$begingroup$
This solution is quite possibly messier than necessary, but it’s what first occurred to me. For convenience let $x=Pbig((Acap B)setminus Cbig)$ and $y=P(Acap Bcap C)$. Let $a=P(A)-2x-y$, $b=P(B)-2x-y$, and $c=P(C)-2x-y$; these are the probabilities of $Asetminus(Bcup C)$, $Bsetminus(Acup C)$, and $Csetminus(Acup B)$, respectively. (A Venn diagram is helpful here.)
Now $$b+2x+y=2(a+2x+y)=2a+4x+2y;,$$ so $b=2a+2x+y$. Similarly, $$c+2x+y=3(a+2x+y)=3a+6x+3y;,$$ so $c=3a+4x+2y$. Then
$$begin{align*}
1&=P(Acup Bcup C)\
&=a+b+c+3x+y\
&=6a+9x+4y\
&=4(a+2x+y)+2a+x\
&=4P(A)+2a+x;.
end{align*}$$
Since $2a+xge 0$, we must have $P(A)le frac{1}{4}$.
$endgroup$
$begingroup$
But I guess $a= P(A) -2x+y$ and it changes a lot...
$endgroup$
– Anne
Feb 19 '13 at 20:58
$begingroup$
@Anne: Sorry: I typoed the definition of $x$. You’ll see that everything is correct if $x$ is the probability of $(Acap B)setminus C$, as it was intended to be.
$endgroup$
– Brian M. Scott
Feb 20 '13 at 0:29
add a comment |
$begingroup$
This solution is quite possibly messier than necessary, but it’s what first occurred to me. For convenience let $x=Pbig((Acap B)setminus Cbig)$ and $y=P(Acap Bcap C)$. Let $a=P(A)-2x-y$, $b=P(B)-2x-y$, and $c=P(C)-2x-y$; these are the probabilities of $Asetminus(Bcup C)$, $Bsetminus(Acup C)$, and $Csetminus(Acup B)$, respectively. (A Venn diagram is helpful here.)
Now $$b+2x+y=2(a+2x+y)=2a+4x+2y;,$$ so $b=2a+2x+y$. Similarly, $$c+2x+y=3(a+2x+y)=3a+6x+3y;,$$ so $c=3a+4x+2y$. Then
$$begin{align*}
1&=P(Acup Bcup C)\
&=a+b+c+3x+y\
&=6a+9x+4y\
&=4(a+2x+y)+2a+x\
&=4P(A)+2a+x;.
end{align*}$$
Since $2a+xge 0$, we must have $P(A)le frac{1}{4}$.
$endgroup$
$begingroup$
But I guess $a= P(A) -2x+y$ and it changes a lot...
$endgroup$
– Anne
Feb 19 '13 at 20:58
$begingroup$
@Anne: Sorry: I typoed the definition of $x$. You’ll see that everything is correct if $x$ is the probability of $(Acap B)setminus C$, as it was intended to be.
$endgroup$
– Brian M. Scott
Feb 20 '13 at 0:29
add a comment |
$begingroup$
This solution is quite possibly messier than necessary, but it’s what first occurred to me. For convenience let $x=Pbig((Acap B)setminus Cbig)$ and $y=P(Acap Bcap C)$. Let $a=P(A)-2x-y$, $b=P(B)-2x-y$, and $c=P(C)-2x-y$; these are the probabilities of $Asetminus(Bcup C)$, $Bsetminus(Acup C)$, and $Csetminus(Acup B)$, respectively. (A Venn diagram is helpful here.)
Now $$b+2x+y=2(a+2x+y)=2a+4x+2y;,$$ so $b=2a+2x+y$. Similarly, $$c+2x+y=3(a+2x+y)=3a+6x+3y;,$$ so $c=3a+4x+2y$. Then
$$begin{align*}
1&=P(Acup Bcup C)\
&=a+b+c+3x+y\
&=6a+9x+4y\
&=4(a+2x+y)+2a+x\
&=4P(A)+2a+x;.
end{align*}$$
Since $2a+xge 0$, we must have $P(A)le frac{1}{4}$.
$endgroup$
This solution is quite possibly messier than necessary, but it’s what first occurred to me. For convenience let $x=Pbig((Acap B)setminus Cbig)$ and $y=P(Acap Bcap C)$. Let $a=P(A)-2x-y$, $b=P(B)-2x-y$, and $c=P(C)-2x-y$; these are the probabilities of $Asetminus(Bcup C)$, $Bsetminus(Acup C)$, and $Csetminus(Acup B)$, respectively. (A Venn diagram is helpful here.)
Now $$b+2x+y=2(a+2x+y)=2a+4x+2y;,$$ so $b=2a+2x+y$. Similarly, $$c+2x+y=3(a+2x+y)=3a+6x+3y;,$$ so $c=3a+4x+2y$. Then
$$begin{align*}
1&=P(Acup Bcup C)\
&=a+b+c+3x+y\
&=6a+9x+4y\
&=4(a+2x+y)+2a+x\
&=4P(A)+2a+x;.
end{align*}$$
Since $2a+xge 0$, we must have $P(A)le frac{1}{4}$.
edited Feb 20 '13 at 0:30
answered Feb 19 '13 at 20:16


Brian M. ScottBrian M. Scott
457k38510909
457k38510909
$begingroup$
But I guess $a= P(A) -2x+y$ and it changes a lot...
$endgroup$
– Anne
Feb 19 '13 at 20:58
$begingroup$
@Anne: Sorry: I typoed the definition of $x$. You’ll see that everything is correct if $x$ is the probability of $(Acap B)setminus C$, as it was intended to be.
$endgroup$
– Brian M. Scott
Feb 20 '13 at 0:29
add a comment |
$begingroup$
But I guess $a= P(A) -2x+y$ and it changes a lot...
$endgroup$
– Anne
Feb 19 '13 at 20:58
$begingroup$
@Anne: Sorry: I typoed the definition of $x$. You’ll see that everything is correct if $x$ is the probability of $(Acap B)setminus C$, as it was intended to be.
$endgroup$
– Brian M. Scott
Feb 20 '13 at 0:29
$begingroup$
But I guess $a= P(A) -2x+y$ and it changes a lot...
$endgroup$
– Anne
Feb 19 '13 at 20:58
$begingroup$
But I guess $a= P(A) -2x+y$ and it changes a lot...
$endgroup$
– Anne
Feb 19 '13 at 20:58
$begingroup$
@Anne: Sorry: I typoed the definition of $x$. You’ll see that everything is correct if $x$ is the probability of $(Acap B)setminus C$, as it was intended to be.
$endgroup$
– Brian M. Scott
Feb 20 '13 at 0:29
$begingroup$
@Anne: Sorry: I typoed the definition of $x$. You’ll see that everything is correct if $x$ is the probability of $(Acap B)setminus C$, as it was intended to be.
$endgroup$
– Brian M. Scott
Feb 20 '13 at 0:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f308386%2fif-pa-cup-b-cup-c-1-pb-2pa-pc-3pa-pa-cap-b-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown