Inequality problem: with $x,y,z>0$, show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq...












0












$begingroup$


I am studying AM-GM inequalities in school and have this problem:



With $x,y,z>0$ show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq x^2+y^2+z^2$.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I am studying AM-GM inequalities in school and have this problem:



    With $x,y,z>0$ show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq x^2+y^2+z^2$.










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      3



      $begingroup$


      I am studying AM-GM inequalities in school and have this problem:



      With $x,y,z>0$ show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq x^2+y^2+z^2$.










      share|cite|improve this question











      $endgroup$




      I am studying AM-GM inequalities in school and have this problem:



      With $x,y,z>0$ show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq x^2+y^2+z^2$.







      inequality a.m.-g.m.-inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 12 at 2:59









      David G. Stork

      11k41432




      11k41432










      asked Jan 12 at 2:57









      HoàngHoàng

      82




      82






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Idea behind the solution



          By AM-GM you have for each $alpha, beta, gamma in mathbb N$
          $$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$



          Then by symmetry you can permute circularly the coefficients and add the inequalities.



          Now, set the RHS $=x^2$. This yields
          $$5 alpha -3 gamma = 2alpha+2beta+2gamma \
          5 beta- 3 alpha=0 \
          5 gamma -3 beta =0
          $$



          Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
          $$9 alpha =15 beta =25 gamma$$



          In particular the following is a solution:
          $$alpha=25 \
          beta =15 \
          gamma=9$$



          The solution
          By AM-GM you have
          $$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
          frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
          frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
          $$



          Add them together.






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Thank you very much for providing the motivation
            $endgroup$
            – user574848
            Jan 12 at 3:20










          • $begingroup$
            thank you so much for answering
            $endgroup$
            – Hoàng
            Jan 12 at 3:37



















          3












          $begingroup$

          By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
          $$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
          Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$






          share|cite|improve this answer









          $endgroup$









          • 2




            $begingroup$
            Michael.Very nice.in 3 lines!
            $endgroup$
            – Peter Szilas
            Jan 12 at 7:19










          • $begingroup$
            @Peter Szila It's just one line: the last line with remark: By AM-GM.
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 7:20











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070548%2finequality-problem-with-x-y-z0-show-that-fracx5y3-fracy5z3%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Idea behind the solution



          By AM-GM you have for each $alpha, beta, gamma in mathbb N$
          $$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$



          Then by symmetry you can permute circularly the coefficients and add the inequalities.



          Now, set the RHS $=x^2$. This yields
          $$5 alpha -3 gamma = 2alpha+2beta+2gamma \
          5 beta- 3 alpha=0 \
          5 gamma -3 beta =0
          $$



          Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
          $$9 alpha =15 beta =25 gamma$$



          In particular the following is a solution:
          $$alpha=25 \
          beta =15 \
          gamma=9$$



          The solution
          By AM-GM you have
          $$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
          frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
          frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
          $$



          Add them together.






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Thank you very much for providing the motivation
            $endgroup$
            – user574848
            Jan 12 at 3:20










          • $begingroup$
            thank you so much for answering
            $endgroup$
            – Hoàng
            Jan 12 at 3:37
















          5












          $begingroup$

          Idea behind the solution



          By AM-GM you have for each $alpha, beta, gamma in mathbb N$
          $$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$



          Then by symmetry you can permute circularly the coefficients and add the inequalities.



          Now, set the RHS $=x^2$. This yields
          $$5 alpha -3 gamma = 2alpha+2beta+2gamma \
          5 beta- 3 alpha=0 \
          5 gamma -3 beta =0
          $$



          Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
          $$9 alpha =15 beta =25 gamma$$



          In particular the following is a solution:
          $$alpha=25 \
          beta =15 \
          gamma=9$$



          The solution
          By AM-GM you have
          $$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
          frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
          frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
          $$



          Add them together.






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Thank you very much for providing the motivation
            $endgroup$
            – user574848
            Jan 12 at 3:20










          • $begingroup$
            thank you so much for answering
            $endgroup$
            – Hoàng
            Jan 12 at 3:37














          5












          5








          5





          $begingroup$

          Idea behind the solution



          By AM-GM you have for each $alpha, beta, gamma in mathbb N$
          $$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$



          Then by symmetry you can permute circularly the coefficients and add the inequalities.



          Now, set the RHS $=x^2$. This yields
          $$5 alpha -3 gamma = 2alpha+2beta+2gamma \
          5 beta- 3 alpha=0 \
          5 gamma -3 beta =0
          $$



          Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
          $$9 alpha =15 beta =25 gamma$$



          In particular the following is a solution:
          $$alpha=25 \
          beta =15 \
          gamma=9$$



          The solution
          By AM-GM you have
          $$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
          frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
          frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
          $$



          Add them together.






          share|cite|improve this answer









          $endgroup$



          Idea behind the solution



          By AM-GM you have for each $alpha, beta, gamma in mathbb N$
          $$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$



          Then by symmetry you can permute circularly the coefficients and add the inequalities.



          Now, set the RHS $=x^2$. This yields
          $$5 alpha -3 gamma = 2alpha+2beta+2gamma \
          5 beta- 3 alpha=0 \
          5 gamma -3 beta =0
          $$



          Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
          $$9 alpha =15 beta =25 gamma$$



          In particular the following is a solution:
          $$alpha=25 \
          beta =15 \
          gamma=9$$



          The solution
          By AM-GM you have
          $$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
          frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
          frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
          $$



          Add them together.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 12 at 3:19









          N. S.N. S.

          103k6112208




          103k6112208








          • 1




            $begingroup$
            Thank you very much for providing the motivation
            $endgroup$
            – user574848
            Jan 12 at 3:20










          • $begingroup$
            thank you so much for answering
            $endgroup$
            – Hoàng
            Jan 12 at 3:37














          • 1




            $begingroup$
            Thank you very much for providing the motivation
            $endgroup$
            – user574848
            Jan 12 at 3:20










          • $begingroup$
            thank you so much for answering
            $endgroup$
            – Hoàng
            Jan 12 at 3:37








          1




          1




          $begingroup$
          Thank you very much for providing the motivation
          $endgroup$
          – user574848
          Jan 12 at 3:20




          $begingroup$
          Thank you very much for providing the motivation
          $endgroup$
          – user574848
          Jan 12 at 3:20












          $begingroup$
          thank you so much for answering
          $endgroup$
          – Hoàng
          Jan 12 at 3:37




          $begingroup$
          thank you so much for answering
          $endgroup$
          – Hoàng
          Jan 12 at 3:37











          3












          $begingroup$

          By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
          $$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
          Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$






          share|cite|improve this answer









          $endgroup$









          • 2




            $begingroup$
            Michael.Very nice.in 3 lines!
            $endgroup$
            – Peter Szilas
            Jan 12 at 7:19










          • $begingroup$
            @Peter Szila It's just one line: the last line with remark: By AM-GM.
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 7:20
















          3












          $begingroup$

          By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
          $$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
          Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$






          share|cite|improve this answer









          $endgroup$









          • 2




            $begingroup$
            Michael.Very nice.in 3 lines!
            $endgroup$
            – Peter Szilas
            Jan 12 at 7:19










          • $begingroup$
            @Peter Szila It's just one line: the last line with remark: By AM-GM.
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 7:20














          3












          3








          3





          $begingroup$

          By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
          $$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
          Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$






          share|cite|improve this answer









          $endgroup$



          By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
          $$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
          Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 12 at 5:30









          Michael RozenbergMichael Rozenberg

          103k1891195




          103k1891195








          • 2




            $begingroup$
            Michael.Very nice.in 3 lines!
            $endgroup$
            – Peter Szilas
            Jan 12 at 7:19










          • $begingroup$
            @Peter Szila It's just one line: the last line with remark: By AM-GM.
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 7:20














          • 2




            $begingroup$
            Michael.Very nice.in 3 lines!
            $endgroup$
            – Peter Szilas
            Jan 12 at 7:19










          • $begingroup$
            @Peter Szila It's just one line: the last line with remark: By AM-GM.
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 7:20








          2




          2




          $begingroup$
          Michael.Very nice.in 3 lines!
          $endgroup$
          – Peter Szilas
          Jan 12 at 7:19




          $begingroup$
          Michael.Very nice.in 3 lines!
          $endgroup$
          – Peter Szilas
          Jan 12 at 7:19












          $begingroup$
          @Peter Szila It's just one line: the last line with remark: By AM-GM.
          $endgroup$
          – Michael Rozenberg
          Jan 12 at 7:20




          $begingroup$
          @Peter Szila It's just one line: the last line with remark: By AM-GM.
          $endgroup$
          – Michael Rozenberg
          Jan 12 at 7:20


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070548%2finequality-problem-with-x-y-z0-show-that-fracx5y3-fracy5z3%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          Npm cannot find a required file even through it is in the searched directory