Inequality problem: with $x,y,z>0$, show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq...
$begingroup$
I am studying AM-GM inequalities in school and have this problem:
With $x,y,z>0$ show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq x^2+y^2+z^2$.
inequality a.m.-g.m.-inequality
$endgroup$
add a comment |
$begingroup$
I am studying AM-GM inequalities in school and have this problem:
With $x,y,z>0$ show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq x^2+y^2+z^2$.
inequality a.m.-g.m.-inequality
$endgroup$
add a comment |
$begingroup$
I am studying AM-GM inequalities in school and have this problem:
With $x,y,z>0$ show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq x^2+y^2+z^2$.
inequality a.m.-g.m.-inequality
$endgroup$
I am studying AM-GM inequalities in school and have this problem:
With $x,y,z>0$ show that $frac{x^5}{y^3}+frac{y^5}{z^3}+frac{z^5}{x^3}geq x^2+y^2+z^2$.
inequality a.m.-g.m.-inequality
inequality a.m.-g.m.-inequality
edited Jan 12 at 2:59


David G. Stork
11k41432
11k41432
asked Jan 12 at 2:57
HoàngHoàng
82
82
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Idea behind the solution
By AM-GM you have for each $alpha, beta, gamma in mathbb N$
$$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$
Then by symmetry you can permute circularly the coefficients and add the inequalities.
Now, set the RHS $=x^2$. This yields
$$5 alpha -3 gamma = 2alpha+2beta+2gamma \
5 beta- 3 alpha=0 \
5 gamma -3 beta =0
$$
Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
$$9 alpha =15 beta =25 gamma$$
In particular the following is a solution:
$$alpha=25 \
beta =15 \
gamma=9$$
The solution
By AM-GM you have
$$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
$$
Add them together.
$endgroup$
1
$begingroup$
Thank you very much for providing the motivation
$endgroup$
– user574848
Jan 12 at 3:20
$begingroup$
thank you so much for answering
$endgroup$
– Hoàng
Jan 12 at 3:37
add a comment |
$begingroup$
By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
$$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$
$endgroup$
2
$begingroup$
Michael.Very nice.in 3 lines!
$endgroup$
– Peter Szilas
Jan 12 at 7:19
$begingroup$
@Peter Szila It's just one line: the last line with remark: By AM-GM.
$endgroup$
– Michael Rozenberg
Jan 12 at 7:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070548%2finequality-problem-with-x-y-z0-show-that-fracx5y3-fracy5z3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Idea behind the solution
By AM-GM you have for each $alpha, beta, gamma in mathbb N$
$$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$
Then by symmetry you can permute circularly the coefficients and add the inequalities.
Now, set the RHS $=x^2$. This yields
$$5 alpha -3 gamma = 2alpha+2beta+2gamma \
5 beta- 3 alpha=0 \
5 gamma -3 beta =0
$$
Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
$$9 alpha =15 beta =25 gamma$$
In particular the following is a solution:
$$alpha=25 \
beta =15 \
gamma=9$$
The solution
By AM-GM you have
$$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
$$
Add them together.
$endgroup$
1
$begingroup$
Thank you very much for providing the motivation
$endgroup$
– user574848
Jan 12 at 3:20
$begingroup$
thank you so much for answering
$endgroup$
– Hoàng
Jan 12 at 3:37
add a comment |
$begingroup$
Idea behind the solution
By AM-GM you have for each $alpha, beta, gamma in mathbb N$
$$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$
Then by symmetry you can permute circularly the coefficients and add the inequalities.
Now, set the RHS $=x^2$. This yields
$$5 alpha -3 gamma = 2alpha+2beta+2gamma \
5 beta- 3 alpha=0 \
5 gamma -3 beta =0
$$
Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
$$9 alpha =15 beta =25 gamma$$
In particular the following is a solution:
$$alpha=25 \
beta =15 \
gamma=9$$
The solution
By AM-GM you have
$$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
$$
Add them together.
$endgroup$
1
$begingroup$
Thank you very much for providing the motivation
$endgroup$
– user574848
Jan 12 at 3:20
$begingroup$
thank you so much for answering
$endgroup$
– Hoàng
Jan 12 at 3:37
add a comment |
$begingroup$
Idea behind the solution
By AM-GM you have for each $alpha, beta, gamma in mathbb N$
$$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$
Then by symmetry you can permute circularly the coefficients and add the inequalities.
Now, set the RHS $=x^2$. This yields
$$5 alpha -3 gamma = 2alpha+2beta+2gamma \
5 beta- 3 alpha=0 \
5 gamma -3 beta =0
$$
Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
$$9 alpha =15 beta =25 gamma$$
In particular the following is a solution:
$$alpha=25 \
beta =15 \
gamma=9$$
The solution
By AM-GM you have
$$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
$$
Add them together.
$endgroup$
Idea behind the solution
By AM-GM you have for each $alpha, beta, gamma in mathbb N$
$$frac{alphafrac{x^5}{y^3}+betafrac{y^5}{z^3}+gammafrac{z^5}{x^3}}{alpha+beta+gamma}geq sqrt[alpha+beta+gamma]{(frac{x^5}{y^3})^alpha(frac{y^5}{z^3})^beta(frac{z^5}{x^3})^gamma}$$
Then by symmetry you can permute circularly the coefficients and add the inequalities.
Now, set the RHS $=x^2$. This yields
$$5 alpha -3 gamma = 2alpha+2beta+2gamma \
5 beta- 3 alpha=0 \
5 gamma -3 beta =0
$$
Since the third equation is the sum of the first two (this comes from the fact that your inequality is homogeneous) your system has infinitely many solutions. Solving you get
$$9 alpha =15 beta =25 gamma$$
In particular the following is a solution:
$$alpha=25 \
beta =15 \
gamma=9$$
The solution
By AM-GM you have
$$frac{25frac{x^5}{y^3}+15frac{y^5}{z^3}+9frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{25}(frac{y^5}{z^3})^{15}(frac{z^5}{x^3})^{9}}=x^2\
frac{9frac{x^5}{y^3}+25frac{y^5}{z^3}+15frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{9}(frac{y^5}{z^3})^{25}(frac{z^5}{x^3})^{15}}=y^2\
frac{15frac{x^5}{y^3}+9frac{y^5}{z^3}+25frac{z^5}{x^3}}{49}geq sqrt[49]{(frac{x^5}{y^3})^{15}(frac{y^5}{z^3})^{9}(frac{z^5}{x^3})^{25}}=z^2\
$$
Add them together.
answered Jan 12 at 3:19
N. S.N. S.
103k6112208
103k6112208
1
$begingroup$
Thank you very much for providing the motivation
$endgroup$
– user574848
Jan 12 at 3:20
$begingroup$
thank you so much for answering
$endgroup$
– Hoàng
Jan 12 at 3:37
add a comment |
1
$begingroup$
Thank you very much for providing the motivation
$endgroup$
– user574848
Jan 12 at 3:20
$begingroup$
thank you so much for answering
$endgroup$
– Hoàng
Jan 12 at 3:37
1
1
$begingroup$
Thank you very much for providing the motivation
$endgroup$
– user574848
Jan 12 at 3:20
$begingroup$
Thank you very much for providing the motivation
$endgroup$
– user574848
Jan 12 at 3:20
$begingroup$
thank you so much for answering
$endgroup$
– Hoàng
Jan 12 at 3:37
$begingroup$
thank you so much for answering
$endgroup$
– Hoàng
Jan 12 at 3:37
add a comment |
$begingroup$
By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
$$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$
$endgroup$
2
$begingroup$
Michael.Very nice.in 3 lines!
$endgroup$
– Peter Szilas
Jan 12 at 7:19
$begingroup$
@Peter Szila It's just one line: the last line with remark: By AM-GM.
$endgroup$
– Michael Rozenberg
Jan 12 at 7:20
add a comment |
$begingroup$
By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
$$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$
$endgroup$
2
$begingroup$
Michael.Very nice.in 3 lines!
$endgroup$
– Peter Szilas
Jan 12 at 7:19
$begingroup$
@Peter Szila It's just one line: the last line with remark: By AM-GM.
$endgroup$
– Michael Rozenberg
Jan 12 at 7:20
add a comment |
$begingroup$
By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
$$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$
$endgroup$
By AM-GM $$2x^5+3y^5geq5sqrt[5]{(x^5)^2(y^5)^3}=5x^2y^3,$$ which gives
$$frac{x^5}{y^3}geqfrac{5x^2-3y^2}{2}.$$
Id est, $$sum_{cyc}frac{x^5}{y^3}geqsum_{cyc}frac{5x^2-3y^2}{2}=sum_{cyc}x^2.$$
answered Jan 12 at 5:30
Michael RozenbergMichael Rozenberg
103k1891195
103k1891195
2
$begingroup$
Michael.Very nice.in 3 lines!
$endgroup$
– Peter Szilas
Jan 12 at 7:19
$begingroup$
@Peter Szila It's just one line: the last line with remark: By AM-GM.
$endgroup$
– Michael Rozenberg
Jan 12 at 7:20
add a comment |
2
$begingroup$
Michael.Very nice.in 3 lines!
$endgroup$
– Peter Szilas
Jan 12 at 7:19
$begingroup$
@Peter Szila It's just one line: the last line with remark: By AM-GM.
$endgroup$
– Michael Rozenberg
Jan 12 at 7:20
2
2
$begingroup$
Michael.Very nice.in 3 lines!
$endgroup$
– Peter Szilas
Jan 12 at 7:19
$begingroup$
Michael.Very nice.in 3 lines!
$endgroup$
– Peter Szilas
Jan 12 at 7:19
$begingroup$
@Peter Szila It's just one line: the last line with remark: By AM-GM.
$endgroup$
– Michael Rozenberg
Jan 12 at 7:20
$begingroup$
@Peter Szila It's just one line: the last line with remark: By AM-GM.
$endgroup$
– Michael Rozenberg
Jan 12 at 7:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070548%2finequality-problem-with-x-y-z0-show-that-fracx5y3-fracy5z3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown