Inequality triangle Radon substitutions
$begingroup$
I have this inequality:
$$sum frac {a^3}{p-a}geq 8(2R-r)^2$$
I have tried using Radon substitutions and I get this:
$$sum frac{(y+x)^3}{x}geq 8(2R-r)^2$$
I know from Holder that :
$$sum frac{(y+x)^3}{x}geq frac{(2(x+y+z))^3}{3(x+y+z)}=frac{8(x+y+z)^2}{3}$$
Now I want to prove that:
$$frac{8(x+y+z)^2}{3}geq 8(2R-r)^2$$
And after that I get:
$$p^2geq 48(2R-r)^2$$
Now here I'm not sure that I can prove this.
If someone has a hint or some help I would apreciate.
inequality substitution cauchy-schwarz-inequality geometric-inequalities sos
$endgroup$
add a comment |
$begingroup$
I have this inequality:
$$sum frac {a^3}{p-a}geq 8(2R-r)^2$$
I have tried using Radon substitutions and I get this:
$$sum frac{(y+x)^3}{x}geq 8(2R-r)^2$$
I know from Holder that :
$$sum frac{(y+x)^3}{x}geq frac{(2(x+y+z))^3}{3(x+y+z)}=frac{8(x+y+z)^2}{3}$$
Now I want to prove that:
$$frac{8(x+y+z)^2}{3}geq 8(2R-r)^2$$
And after that I get:
$$p^2geq 48(2R-r)^2$$
Now here I'm not sure that I can prove this.
If someone has a hint or some help I would apreciate.
inequality substitution cauchy-schwarz-inequality geometric-inequalities sos
$endgroup$
add a comment |
$begingroup$
I have this inequality:
$$sum frac {a^3}{p-a}geq 8(2R-r)^2$$
I have tried using Radon substitutions and I get this:
$$sum frac{(y+x)^3}{x}geq 8(2R-r)^2$$
I know from Holder that :
$$sum frac{(y+x)^3}{x}geq frac{(2(x+y+z))^3}{3(x+y+z)}=frac{8(x+y+z)^2}{3}$$
Now I want to prove that:
$$frac{8(x+y+z)^2}{3}geq 8(2R-r)^2$$
And after that I get:
$$p^2geq 48(2R-r)^2$$
Now here I'm not sure that I can prove this.
If someone has a hint or some help I would apreciate.
inequality substitution cauchy-schwarz-inequality geometric-inequalities sos
$endgroup$
I have this inequality:
$$sum frac {a^3}{p-a}geq 8(2R-r)^2$$
I have tried using Radon substitutions and I get this:
$$sum frac{(y+x)^3}{x}geq 8(2R-r)^2$$
I know from Holder that :
$$sum frac{(y+x)^3}{x}geq frac{(2(x+y+z))^3}{3(x+y+z)}=frac{8(x+y+z)^2}{3}$$
Now I want to prove that:
$$frac{8(x+y+z)^2}{3}geq 8(2R-r)^2$$
And after that I get:
$$p^2geq 48(2R-r)^2$$
Now here I'm not sure that I can prove this.
If someone has a hint or some help I would apreciate.
inequality substitution cauchy-schwarz-inequality geometric-inequalities sos
inequality substitution cauchy-schwarz-inequality geometric-inequalities sos
edited Jan 15 at 21:08
Michael Rozenberg
104k1891196
104k1891196
asked Jan 15 at 13:27
ovetz13ovetz13
1547
1547
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In the standard notation we need to prove that
$$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
$$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
Now, by C-S
$$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
Thus, it's enough to prove that
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
$$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$
$endgroup$
$begingroup$
You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
$endgroup$
– ovetz13
Jan 15 at 21:24
$begingroup$
From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
$endgroup$
– ovetz13
Jan 16 at 9:05
$begingroup$
@ovetz13 Yes! It's much more better. I fixed. Thank you!
$endgroup$
– Michael Rozenberg
Jan 16 at 9:18
1
$begingroup$
Thank you ! I am still learning and I'm happy that I can learn from you.
$endgroup$
– ovetz13
Jan 16 at 9:59
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074427%2finequality-triangle-radon-substitutions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In the standard notation we need to prove that
$$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
$$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
Now, by C-S
$$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
Thus, it's enough to prove that
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
$$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$
$endgroup$
$begingroup$
You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
$endgroup$
– ovetz13
Jan 15 at 21:24
$begingroup$
From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
$endgroup$
– ovetz13
Jan 16 at 9:05
$begingroup$
@ovetz13 Yes! It's much more better. I fixed. Thank you!
$endgroup$
– Michael Rozenberg
Jan 16 at 9:18
1
$begingroup$
Thank you ! I am still learning and I'm happy that I can learn from you.
$endgroup$
– ovetz13
Jan 16 at 9:59
add a comment |
$begingroup$
In the standard notation we need to prove that
$$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
$$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
Now, by C-S
$$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
Thus, it's enough to prove that
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
$$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$
$endgroup$
$begingroup$
You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
$endgroup$
– ovetz13
Jan 15 at 21:24
$begingroup$
From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
$endgroup$
– ovetz13
Jan 16 at 9:05
$begingroup$
@ovetz13 Yes! It's much more better. I fixed. Thank you!
$endgroup$
– Michael Rozenberg
Jan 16 at 9:18
1
$begingroup$
Thank you ! I am still learning and I'm happy that I can learn from you.
$endgroup$
– ovetz13
Jan 16 at 9:59
add a comment |
$begingroup$
In the standard notation we need to prove that
$$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
$$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
Now, by C-S
$$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
Thus, it's enough to prove that
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
$$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$
$endgroup$
In the standard notation we need to prove that
$$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
$$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
$$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
Now, by C-S
$$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
Thus, it's enough to prove that
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
$$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
$$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$
edited Jan 16 at 9:21
answered Jan 15 at 21:07
Michael RozenbergMichael Rozenberg
104k1891196
104k1891196
$begingroup$
You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
$endgroup$
– ovetz13
Jan 15 at 21:24
$begingroup$
From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
$endgroup$
– ovetz13
Jan 16 at 9:05
$begingroup$
@ovetz13 Yes! It's much more better. I fixed. Thank you!
$endgroup$
– Michael Rozenberg
Jan 16 at 9:18
1
$begingroup$
Thank you ! I am still learning and I'm happy that I can learn from you.
$endgroup$
– ovetz13
Jan 16 at 9:59
add a comment |
$begingroup$
You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
$endgroup$
– ovetz13
Jan 15 at 21:24
$begingroup$
From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
$endgroup$
– ovetz13
Jan 16 at 9:05
$begingroup$
@ovetz13 Yes! It's much more better. I fixed. Thank you!
$endgroup$
– Michael Rozenberg
Jan 16 at 9:18
1
$begingroup$
Thank you ! I am still learning and I'm happy that I can learn from you.
$endgroup$
– ovetz13
Jan 16 at 9:59
$begingroup$
You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
$endgroup$
– ovetz13
Jan 15 at 21:24
$begingroup$
You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
$endgroup$
– ovetz13
Jan 15 at 21:24
$begingroup$
From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
$endgroup$
– ovetz13
Jan 16 at 9:05
$begingroup$
From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
$endgroup$
– ovetz13
Jan 16 at 9:05
$begingroup$
@ovetz13 Yes! It's much more better. I fixed. Thank you!
$endgroup$
– Michael Rozenberg
Jan 16 at 9:18
$begingroup$
@ovetz13 Yes! It's much more better. I fixed. Thank you!
$endgroup$
– Michael Rozenberg
Jan 16 at 9:18
1
1
$begingroup$
Thank you ! I am still learning and I'm happy that I can learn from you.
$endgroup$
– ovetz13
Jan 16 at 9:59
$begingroup$
Thank you ! I am still learning and I'm happy that I can learn from you.
$endgroup$
– ovetz13
Jan 16 at 9:59
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074427%2finequality-triangle-radon-substitutions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown