Inequality triangle Radon substitutions












0












$begingroup$


I have this inequality:
$$sum frac {a^3}{p-a}geq 8(2R-r)^2$$
I have tried using Radon substitutions and I get this:
$$sum frac{(y+x)^3}{x}geq 8(2R-r)^2$$
I know from Holder that :
$$sum frac{(y+x)^3}{x}geq frac{(2(x+y+z))^3}{3(x+y+z)}=frac{8(x+y+z)^2}{3}$$
Now I want to prove that:
$$frac{8(x+y+z)^2}{3}geq 8(2R-r)^2$$
And after that I get:
$$p^2geq 48(2R-r)^2$$
Now here I'm not sure that I can prove this.
If someone has a hint or some help I would apreciate.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I have this inequality:
    $$sum frac {a^3}{p-a}geq 8(2R-r)^2$$
    I have tried using Radon substitutions and I get this:
    $$sum frac{(y+x)^3}{x}geq 8(2R-r)^2$$
    I know from Holder that :
    $$sum frac{(y+x)^3}{x}geq frac{(2(x+y+z))^3}{3(x+y+z)}=frac{8(x+y+z)^2}{3}$$
    Now I want to prove that:
    $$frac{8(x+y+z)^2}{3}geq 8(2R-r)^2$$
    And after that I get:
    $$p^2geq 48(2R-r)^2$$
    Now here I'm not sure that I can prove this.
    If someone has a hint or some help I would apreciate.










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      1



      $begingroup$


      I have this inequality:
      $$sum frac {a^3}{p-a}geq 8(2R-r)^2$$
      I have tried using Radon substitutions and I get this:
      $$sum frac{(y+x)^3}{x}geq 8(2R-r)^2$$
      I know from Holder that :
      $$sum frac{(y+x)^3}{x}geq frac{(2(x+y+z))^3}{3(x+y+z)}=frac{8(x+y+z)^2}{3}$$
      Now I want to prove that:
      $$frac{8(x+y+z)^2}{3}geq 8(2R-r)^2$$
      And after that I get:
      $$p^2geq 48(2R-r)^2$$
      Now here I'm not sure that I can prove this.
      If someone has a hint or some help I would apreciate.










      share|cite|improve this question











      $endgroup$




      I have this inequality:
      $$sum frac {a^3}{p-a}geq 8(2R-r)^2$$
      I have tried using Radon substitutions and I get this:
      $$sum frac{(y+x)^3}{x}geq 8(2R-r)^2$$
      I know from Holder that :
      $$sum frac{(y+x)^3}{x}geq frac{(2(x+y+z))^3}{3(x+y+z)}=frac{8(x+y+z)^2}{3}$$
      Now I want to prove that:
      $$frac{8(x+y+z)^2}{3}geq 8(2R-r)^2$$
      And after that I get:
      $$p^2geq 48(2R-r)^2$$
      Now here I'm not sure that I can prove this.
      If someone has a hint or some help I would apreciate.







      inequality substitution cauchy-schwarz-inequality geometric-inequalities sos






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 15 at 21:08









      Michael Rozenberg

      104k1891196




      104k1891196










      asked Jan 15 at 13:27









      ovetz13ovetz13

      1547




      1547






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          In the standard notation we need to prove that
          $$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
          Now, let $a=y+z$, $b=x+z$ and $c=x+y$.



          Thus, $x$, $y$ and $z$ are positives and we need to prove that
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
          $$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
          Now, by C-S
          $$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
          Thus, it's enough to prove that
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
            $endgroup$
            – ovetz13
            Jan 15 at 21:24












          • $begingroup$
            From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
            $endgroup$
            – ovetz13
            Jan 16 at 9:05












          • $begingroup$
            @ovetz13 Yes! It's much more better. I fixed. Thank you!
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 9:18








          • 1




            $begingroup$
            Thank you ! I am still learning and I'm happy that I can learn from you.
            $endgroup$
            – ovetz13
            Jan 16 at 9:59











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074427%2finequality-triangle-radon-substitutions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          In the standard notation we need to prove that
          $$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
          Now, let $a=y+z$, $b=x+z$ and $c=x+y$.



          Thus, $x$, $y$ and $z$ are positives and we need to prove that
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
          $$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
          Now, by C-S
          $$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
          Thus, it's enough to prove that
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
            $endgroup$
            – ovetz13
            Jan 15 at 21:24












          • $begingroup$
            From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
            $endgroup$
            – ovetz13
            Jan 16 at 9:05












          • $begingroup$
            @ovetz13 Yes! It's much more better. I fixed. Thank you!
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 9:18








          • 1




            $begingroup$
            Thank you ! I am still learning and I'm happy that I can learn from you.
            $endgroup$
            – ovetz13
            Jan 16 at 9:59
















          1












          $begingroup$

          In the standard notation we need to prove that
          $$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
          Now, let $a=y+z$, $b=x+z$ and $c=x+y$.



          Thus, $x$, $y$ and $z$ are positives and we need to prove that
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
          $$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
          Now, by C-S
          $$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
          Thus, it's enough to prove that
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
            $endgroup$
            – ovetz13
            Jan 15 at 21:24












          • $begingroup$
            From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
            $endgroup$
            – ovetz13
            Jan 16 at 9:05












          • $begingroup$
            @ovetz13 Yes! It's much more better. I fixed. Thank you!
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 9:18








          • 1




            $begingroup$
            Thank you ! I am still learning and I'm happy that I can learn from you.
            $endgroup$
            – ovetz13
            Jan 16 at 9:59














          1












          1








          1





          $begingroup$

          In the standard notation we need to prove that
          $$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
          Now, let $a=y+z$, $b=x+z$ and $c=x+y$.



          Thus, $x$, $y$ and $z$ are positives and we need to prove that
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
          $$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
          Now, by C-S
          $$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
          Thus, it's enough to prove that
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$






          share|cite|improve this answer











          $endgroup$



          In the standard notation we need to prove that
          $$sum_{cyc}frac{a^3}{b+c-a}geq4left(frac{abc}{2S}-frac{2S}{a+b+c}right)^2.$$
          Now, let $a=y+z$, $b=x+z$ and $c=x+y$.



          Thus, $x$, $y$ and $z$ are positives and we need to prove that
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(abc(a+b+c)-4S^2)^2}{S^2(a+b+c)^2}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{(2(x+y)(x+z)(y+z)(x+y+z)-4xyz(x+y+z))^2}{4xyz(x+y+z)^3}$$ or
          $$sum_{cyc}frac{(y+z)^3}{2x}geqfrac{((x+y)(x+z)(y+z)-2xyz)^2}{xyz(x+y+z)}$$ or
          $$(x+y+z)sum_{cyc}xy(x+y)^3geq2left(sum_{cyc}(x^2y+x^2z)right)^2.$$
          Now, by C-S
          $$(x+y+z)sum_{cyc}xy(x+y)^3=frac{1}{2}sum_{cyc}(x+y)sum_{cyc}xy(x+y)^3geqfrac{1}{2}left(sum_{cyc}sqrt{xy}(x+y)^2right)^2.$$
          Thus, it's enough to prove that
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}(x^2y+xy^2)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)^2geq2sum_{cyc}xy(x+y)$$ or
          $$sum_{cyc}sqrt{xy}(x+y)(sqrt{x}-sqrt{y})^2geq0.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 16 at 9:21

























          answered Jan 15 at 21:07









          Michael RozenbergMichael Rozenberg

          104k1891196




          104k1891196












          • $begingroup$
            You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
            $endgroup$
            – ovetz13
            Jan 15 at 21:24












          • $begingroup$
            From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
            $endgroup$
            – ovetz13
            Jan 16 at 9:05












          • $begingroup$
            @ovetz13 Yes! It's much more better. I fixed. Thank you!
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 9:18








          • 1




            $begingroup$
            Thank you ! I am still learning and I'm happy that I can learn from you.
            $endgroup$
            – ovetz13
            Jan 16 at 9:59


















          • $begingroup$
            You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
            $endgroup$
            – ovetz13
            Jan 15 at 21:24












          • $begingroup$
            From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
            $endgroup$
            – ovetz13
            Jan 16 at 9:05












          • $begingroup$
            @ovetz13 Yes! It's much more better. I fixed. Thank you!
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 9:18








          • 1




            $begingroup$
            Thank you ! I am still learning and I'm happy that I can learn from you.
            $endgroup$
            – ovetz13
            Jan 16 at 9:59
















          $begingroup$
          You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
          $endgroup$
          – ovetz13
          Jan 15 at 21:24






          $begingroup$
          You are awesome as always! Have you seen this ?math.stackexchange.com/a/3062532/522272
          $endgroup$
          – ovetz13
          Jan 15 at 21:24














          $begingroup$
          From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
          $endgroup$
          – ovetz13
          Jan 16 at 9:05






          $begingroup$
          From here$sum_{cyc} sqrt {xy}(x+y)^2geq sum_{cyc} (x^2y+x^2z)$ I think we can prove that $$sqrt {xy}(x+y)^2 geq 2(x^2y+y^2x)$$
          $endgroup$
          – ovetz13
          Jan 16 at 9:05














          $begingroup$
          @ovetz13 Yes! It's much more better. I fixed. Thank you!
          $endgroup$
          – Michael Rozenberg
          Jan 16 at 9:18






          $begingroup$
          @ovetz13 Yes! It's much more better. I fixed. Thank you!
          $endgroup$
          – Michael Rozenberg
          Jan 16 at 9:18






          1




          1




          $begingroup$
          Thank you ! I am still learning and I'm happy that I can learn from you.
          $endgroup$
          – ovetz13
          Jan 16 at 9:59




          $begingroup$
          Thank you ! I am still learning and I'm happy that I can learn from you.
          $endgroup$
          – ovetz13
          Jan 16 at 9:59


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074427%2finequality-triangle-radon-substitutions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          How to fix TextFormField cause rebuild widget in Flutter