$p$ is adherent value of $left(sum_{i=1}^{p} z_{i}^nright)_{ninmathbb{N}}$ where $z_{i}$ are complex of...
Here is an exercise I'm trying to solve :
Let $z_{1}, ldots,z_{p}$ be some complex numbers of modulus 1 and, for $ninmathbb{N}$, $u_n = sumlimits_{i=1}^{p} z_{i}^n$.
Show that $p$ is adherent value of $(u_n)$
My attempts : Let $v = (theta_1, ldots,theta_p)$ where $theta_i$ is the argument of $z_i$. Since $mathbb{Z}v + 2pimathbb{Z}^p$ is a subgroup of $mathbb{R}^p$, some properties of subgroups of $mathbb{R}^p$ might help to conclude?
sequences-and-series diophantine-approximation
add a comment |
Here is an exercise I'm trying to solve :
Let $z_{1}, ldots,z_{p}$ be some complex numbers of modulus 1 and, for $ninmathbb{N}$, $u_n = sumlimits_{i=1}^{p} z_{i}^n$.
Show that $p$ is adherent value of $(u_n)$
My attempts : Let $v = (theta_1, ldots,theta_p)$ where $theta_i$ is the argument of $z_i$. Since $mathbb{Z}v + 2pimathbb{Z}^p$ is a subgroup of $mathbb{R}^p$, some properties of subgroups of $mathbb{R}^p$ might help to conclude?
sequences-and-series diophantine-approximation
You can tackle the problem by using simultaneous version of the Dirichlet's approximation theorem
– rtybase
Nov 22 '18 at 23:32
add a comment |
Here is an exercise I'm trying to solve :
Let $z_{1}, ldots,z_{p}$ be some complex numbers of modulus 1 and, for $ninmathbb{N}$, $u_n = sumlimits_{i=1}^{p} z_{i}^n$.
Show that $p$ is adherent value of $(u_n)$
My attempts : Let $v = (theta_1, ldots,theta_p)$ where $theta_i$ is the argument of $z_i$. Since $mathbb{Z}v + 2pimathbb{Z}^p$ is a subgroup of $mathbb{R}^p$, some properties of subgroups of $mathbb{R}^p$ might help to conclude?
sequences-and-series diophantine-approximation
Here is an exercise I'm trying to solve :
Let $z_{1}, ldots,z_{p}$ be some complex numbers of modulus 1 and, for $ninmathbb{N}$, $u_n = sumlimits_{i=1}^{p} z_{i}^n$.
Show that $p$ is adherent value of $(u_n)$
My attempts : Let $v = (theta_1, ldots,theta_p)$ where $theta_i$ is the argument of $z_i$. Since $mathbb{Z}v + 2pimathbb{Z}^p$ is a subgroup of $mathbb{R}^p$, some properties of subgroups of $mathbb{R}^p$ might help to conclude?
sequences-and-series diophantine-approximation
sequences-and-series diophantine-approximation
edited Nov 23 '18 at 0:24
rtybase
10.4k21433
10.4k21433
asked Nov 20 '18 at 13:17
曾靖國
3868
3868
You can tackle the problem by using simultaneous version of the Dirichlet's approximation theorem
– rtybase
Nov 22 '18 at 23:32
add a comment |
You can tackle the problem by using simultaneous version of the Dirichlet's approximation theorem
– rtybase
Nov 22 '18 at 23:32
You can tackle the problem by using simultaneous version of the Dirichlet's approximation theorem
– rtybase
Nov 22 '18 at 23:32
You can tackle the problem by using simultaneous version of the Dirichlet's approximation theorem
– rtybase
Nov 22 '18 at 23:32
add a comment |
2 Answers
2
active
oldest
votes
As per the comments, we can use simultaneous version of the Dirichlet's approximation theorem (svDAT). But before, let's suppose $z_k=e^{ialpha_k}$ (I will use $k$ as the index to avoid confusions with complex $i$) where $|z_k|=1$. From svDAT applied to $frac{alpha_k}{2pi}$ there are integers $t_{1},ldots ,t_{p}$ and $nin mathbb {Z} ,1leq nleq N$ such that
$$left|frac{alpha_{k}}{2pi}-{frac {t_{k}}{n}}right|leq {frac {1}{nN^{1/p}}} Rightarrow
left|nalpha_{k}-2pi t_{k}right|leq {frac {2pi}{N^{1/p}}}$$
For large enough $N$ we have ${frac {2pi}{N^{1/p}}} < varepsilon$ or
$$nalpha_k approx 2pi t_k Rightarrow z_k^n=e^{i nalpha_k} approx e^{i 2pi t_k}=1 tag{1}$$
or
$$sumlimits_{k=1}^{p} z_{k}^n approx p$$
To motivate $(1)$, if we have $|alpha -beta| < varepsilon$ then
$$left| e^{ialpha} -e^{ibeta}right|=
left| cos{alpha}+isin{alpha} -cos{beta}-isin{beta}right|=
left| cos{alpha}-cos{beta}+i(sin{alpha}-sin{beta})right|=\
sqrt{(cos{alpha}-cos{beta})^2+(sin{alpha}-sin{beta})^2}=\
sqrt{left(-2sin{frac{alpha-beta}{2}}sin{frac{alpha+beta}{2}}right)^2+left(2sin{frac{alpha-beta}{2}}cos{frac{alpha+beta}{2}}right)^2}=\
2left|sin{frac{alpha-beta}{2}}right| <
2left|frac{alpha-beta}{2}right| < varepsilon$$
from here.
add a comment |
Sorry to answer my own question. Here is my solution :
Denote by $theta_{i}$ the argument of $z_i$ for all $i$. We show that for all $epsilon>0$, there exists $ninmathbb{Z}$ nonzero such that $(ntheta_{1}, ldots,ntheta_{p})in[0, epsilon]^{p}$ (mod $2pi$) :
Fix $epsilon>0$. Denote $A_{m,k} = [frac{2pi(k-1)}{m}, frac{2pi k}{m}]$ for all $m, kinmathbb{N}, 1leq kleq m$. Then $[0, 1]^psubsetcup_{(k_1, ldots,k_p)in[|1, m|]^p}prod_{i=1}^{p}A_{m, k_{i}}$.
Let $Minmathbb{N}$ such that $M>1/epsilon$ and $Ninmathbb{N}$ such that $N>M^p$. By pigeonhole principle, there must exists $l, sin[|1, N+1|]$ distinct such that $(ltheta_{1}, ldots,ltheta_{p}), (stheta_{1}, ldots,stheta_{p})inprod_{i=1}^{p}A_{m, k_{i}}$ (mod $2pi$) for some $(k_1, ldots,k_p)in[|1, M|]^p$. Then $((l-s)theta_{1}, ldots,(l-s)theta_{p})in[0, epsilon]^{p}$ (mod $2pi$). Done.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006294%2fp-is-adherent-value-of-left-sum-i-1p-z-in-right-n-in-mathbbn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
As per the comments, we can use simultaneous version of the Dirichlet's approximation theorem (svDAT). But before, let's suppose $z_k=e^{ialpha_k}$ (I will use $k$ as the index to avoid confusions with complex $i$) where $|z_k|=1$. From svDAT applied to $frac{alpha_k}{2pi}$ there are integers $t_{1},ldots ,t_{p}$ and $nin mathbb {Z} ,1leq nleq N$ such that
$$left|frac{alpha_{k}}{2pi}-{frac {t_{k}}{n}}right|leq {frac {1}{nN^{1/p}}} Rightarrow
left|nalpha_{k}-2pi t_{k}right|leq {frac {2pi}{N^{1/p}}}$$
For large enough $N$ we have ${frac {2pi}{N^{1/p}}} < varepsilon$ or
$$nalpha_k approx 2pi t_k Rightarrow z_k^n=e^{i nalpha_k} approx e^{i 2pi t_k}=1 tag{1}$$
or
$$sumlimits_{k=1}^{p} z_{k}^n approx p$$
To motivate $(1)$, if we have $|alpha -beta| < varepsilon$ then
$$left| e^{ialpha} -e^{ibeta}right|=
left| cos{alpha}+isin{alpha} -cos{beta}-isin{beta}right|=
left| cos{alpha}-cos{beta}+i(sin{alpha}-sin{beta})right|=\
sqrt{(cos{alpha}-cos{beta})^2+(sin{alpha}-sin{beta})^2}=\
sqrt{left(-2sin{frac{alpha-beta}{2}}sin{frac{alpha+beta}{2}}right)^2+left(2sin{frac{alpha-beta}{2}}cos{frac{alpha+beta}{2}}right)^2}=\
2left|sin{frac{alpha-beta}{2}}right| <
2left|frac{alpha-beta}{2}right| < varepsilon$$
from here.
add a comment |
As per the comments, we can use simultaneous version of the Dirichlet's approximation theorem (svDAT). But before, let's suppose $z_k=e^{ialpha_k}$ (I will use $k$ as the index to avoid confusions with complex $i$) where $|z_k|=1$. From svDAT applied to $frac{alpha_k}{2pi}$ there are integers $t_{1},ldots ,t_{p}$ and $nin mathbb {Z} ,1leq nleq N$ such that
$$left|frac{alpha_{k}}{2pi}-{frac {t_{k}}{n}}right|leq {frac {1}{nN^{1/p}}} Rightarrow
left|nalpha_{k}-2pi t_{k}right|leq {frac {2pi}{N^{1/p}}}$$
For large enough $N$ we have ${frac {2pi}{N^{1/p}}} < varepsilon$ or
$$nalpha_k approx 2pi t_k Rightarrow z_k^n=e^{i nalpha_k} approx e^{i 2pi t_k}=1 tag{1}$$
or
$$sumlimits_{k=1}^{p} z_{k}^n approx p$$
To motivate $(1)$, if we have $|alpha -beta| < varepsilon$ then
$$left| e^{ialpha} -e^{ibeta}right|=
left| cos{alpha}+isin{alpha} -cos{beta}-isin{beta}right|=
left| cos{alpha}-cos{beta}+i(sin{alpha}-sin{beta})right|=\
sqrt{(cos{alpha}-cos{beta})^2+(sin{alpha}-sin{beta})^2}=\
sqrt{left(-2sin{frac{alpha-beta}{2}}sin{frac{alpha+beta}{2}}right)^2+left(2sin{frac{alpha-beta}{2}}cos{frac{alpha+beta}{2}}right)^2}=\
2left|sin{frac{alpha-beta}{2}}right| <
2left|frac{alpha-beta}{2}right| < varepsilon$$
from here.
add a comment |
As per the comments, we can use simultaneous version of the Dirichlet's approximation theorem (svDAT). But before, let's suppose $z_k=e^{ialpha_k}$ (I will use $k$ as the index to avoid confusions with complex $i$) where $|z_k|=1$. From svDAT applied to $frac{alpha_k}{2pi}$ there are integers $t_{1},ldots ,t_{p}$ and $nin mathbb {Z} ,1leq nleq N$ such that
$$left|frac{alpha_{k}}{2pi}-{frac {t_{k}}{n}}right|leq {frac {1}{nN^{1/p}}} Rightarrow
left|nalpha_{k}-2pi t_{k}right|leq {frac {2pi}{N^{1/p}}}$$
For large enough $N$ we have ${frac {2pi}{N^{1/p}}} < varepsilon$ or
$$nalpha_k approx 2pi t_k Rightarrow z_k^n=e^{i nalpha_k} approx e^{i 2pi t_k}=1 tag{1}$$
or
$$sumlimits_{k=1}^{p} z_{k}^n approx p$$
To motivate $(1)$, if we have $|alpha -beta| < varepsilon$ then
$$left| e^{ialpha} -e^{ibeta}right|=
left| cos{alpha}+isin{alpha} -cos{beta}-isin{beta}right|=
left| cos{alpha}-cos{beta}+i(sin{alpha}-sin{beta})right|=\
sqrt{(cos{alpha}-cos{beta})^2+(sin{alpha}-sin{beta})^2}=\
sqrt{left(-2sin{frac{alpha-beta}{2}}sin{frac{alpha+beta}{2}}right)^2+left(2sin{frac{alpha-beta}{2}}cos{frac{alpha+beta}{2}}right)^2}=\
2left|sin{frac{alpha-beta}{2}}right| <
2left|frac{alpha-beta}{2}right| < varepsilon$$
from here.
As per the comments, we can use simultaneous version of the Dirichlet's approximation theorem (svDAT). But before, let's suppose $z_k=e^{ialpha_k}$ (I will use $k$ as the index to avoid confusions with complex $i$) where $|z_k|=1$. From svDAT applied to $frac{alpha_k}{2pi}$ there are integers $t_{1},ldots ,t_{p}$ and $nin mathbb {Z} ,1leq nleq N$ such that
$$left|frac{alpha_{k}}{2pi}-{frac {t_{k}}{n}}right|leq {frac {1}{nN^{1/p}}} Rightarrow
left|nalpha_{k}-2pi t_{k}right|leq {frac {2pi}{N^{1/p}}}$$
For large enough $N$ we have ${frac {2pi}{N^{1/p}}} < varepsilon$ or
$$nalpha_k approx 2pi t_k Rightarrow z_k^n=e^{i nalpha_k} approx e^{i 2pi t_k}=1 tag{1}$$
or
$$sumlimits_{k=1}^{p} z_{k}^n approx p$$
To motivate $(1)$, if we have $|alpha -beta| < varepsilon$ then
$$left| e^{ialpha} -e^{ibeta}right|=
left| cos{alpha}+isin{alpha} -cos{beta}-isin{beta}right|=
left| cos{alpha}-cos{beta}+i(sin{alpha}-sin{beta})right|=\
sqrt{(cos{alpha}-cos{beta})^2+(sin{alpha}-sin{beta})^2}=\
sqrt{left(-2sin{frac{alpha-beta}{2}}sin{frac{alpha+beta}{2}}right)^2+left(2sin{frac{alpha-beta}{2}}cos{frac{alpha+beta}{2}}right)^2}=\
2left|sin{frac{alpha-beta}{2}}right| <
2left|frac{alpha-beta}{2}right| < varepsilon$$
from here.
answered Nov 23 '18 at 0:20
rtybase
10.4k21433
10.4k21433
add a comment |
add a comment |
Sorry to answer my own question. Here is my solution :
Denote by $theta_{i}$ the argument of $z_i$ for all $i$. We show that for all $epsilon>0$, there exists $ninmathbb{Z}$ nonzero such that $(ntheta_{1}, ldots,ntheta_{p})in[0, epsilon]^{p}$ (mod $2pi$) :
Fix $epsilon>0$. Denote $A_{m,k} = [frac{2pi(k-1)}{m}, frac{2pi k}{m}]$ for all $m, kinmathbb{N}, 1leq kleq m$. Then $[0, 1]^psubsetcup_{(k_1, ldots,k_p)in[|1, m|]^p}prod_{i=1}^{p}A_{m, k_{i}}$.
Let $Minmathbb{N}$ such that $M>1/epsilon$ and $Ninmathbb{N}$ such that $N>M^p$. By pigeonhole principle, there must exists $l, sin[|1, N+1|]$ distinct such that $(ltheta_{1}, ldots,ltheta_{p}), (stheta_{1}, ldots,stheta_{p})inprod_{i=1}^{p}A_{m, k_{i}}$ (mod $2pi$) for some $(k_1, ldots,k_p)in[|1, M|]^p$. Then $((l-s)theta_{1}, ldots,(l-s)theta_{p})in[0, epsilon]^{p}$ (mod $2pi$). Done.
add a comment |
Sorry to answer my own question. Here is my solution :
Denote by $theta_{i}$ the argument of $z_i$ for all $i$. We show that for all $epsilon>0$, there exists $ninmathbb{Z}$ nonzero such that $(ntheta_{1}, ldots,ntheta_{p})in[0, epsilon]^{p}$ (mod $2pi$) :
Fix $epsilon>0$. Denote $A_{m,k} = [frac{2pi(k-1)}{m}, frac{2pi k}{m}]$ for all $m, kinmathbb{N}, 1leq kleq m$. Then $[0, 1]^psubsetcup_{(k_1, ldots,k_p)in[|1, m|]^p}prod_{i=1}^{p}A_{m, k_{i}}$.
Let $Minmathbb{N}$ such that $M>1/epsilon$ and $Ninmathbb{N}$ such that $N>M^p$. By pigeonhole principle, there must exists $l, sin[|1, N+1|]$ distinct such that $(ltheta_{1}, ldots,ltheta_{p}), (stheta_{1}, ldots,stheta_{p})inprod_{i=1}^{p}A_{m, k_{i}}$ (mod $2pi$) for some $(k_1, ldots,k_p)in[|1, M|]^p$. Then $((l-s)theta_{1}, ldots,(l-s)theta_{p})in[0, epsilon]^{p}$ (mod $2pi$). Done.
add a comment |
Sorry to answer my own question. Here is my solution :
Denote by $theta_{i}$ the argument of $z_i$ for all $i$. We show that for all $epsilon>0$, there exists $ninmathbb{Z}$ nonzero such that $(ntheta_{1}, ldots,ntheta_{p})in[0, epsilon]^{p}$ (mod $2pi$) :
Fix $epsilon>0$. Denote $A_{m,k} = [frac{2pi(k-1)}{m}, frac{2pi k}{m}]$ for all $m, kinmathbb{N}, 1leq kleq m$. Then $[0, 1]^psubsetcup_{(k_1, ldots,k_p)in[|1, m|]^p}prod_{i=1}^{p}A_{m, k_{i}}$.
Let $Minmathbb{N}$ such that $M>1/epsilon$ and $Ninmathbb{N}$ such that $N>M^p$. By pigeonhole principle, there must exists $l, sin[|1, N+1|]$ distinct such that $(ltheta_{1}, ldots,ltheta_{p}), (stheta_{1}, ldots,stheta_{p})inprod_{i=1}^{p}A_{m, k_{i}}$ (mod $2pi$) for some $(k_1, ldots,k_p)in[|1, M|]^p$. Then $((l-s)theta_{1}, ldots,(l-s)theta_{p})in[0, epsilon]^{p}$ (mod $2pi$). Done.
Sorry to answer my own question. Here is my solution :
Denote by $theta_{i}$ the argument of $z_i$ for all $i$. We show that for all $epsilon>0$, there exists $ninmathbb{Z}$ nonzero such that $(ntheta_{1}, ldots,ntheta_{p})in[0, epsilon]^{p}$ (mod $2pi$) :
Fix $epsilon>0$. Denote $A_{m,k} = [frac{2pi(k-1)}{m}, frac{2pi k}{m}]$ for all $m, kinmathbb{N}, 1leq kleq m$. Then $[0, 1]^psubsetcup_{(k_1, ldots,k_p)in[|1, m|]^p}prod_{i=1}^{p}A_{m, k_{i}}$.
Let $Minmathbb{N}$ such that $M>1/epsilon$ and $Ninmathbb{N}$ such that $N>M^p$. By pigeonhole principle, there must exists $l, sin[|1, N+1|]$ distinct such that $(ltheta_{1}, ldots,ltheta_{p}), (stheta_{1}, ldots,stheta_{p})inprod_{i=1}^{p}A_{m, k_{i}}$ (mod $2pi$) for some $(k_1, ldots,k_p)in[|1, M|]^p$. Then $((l-s)theta_{1}, ldots,(l-s)theta_{p})in[0, epsilon]^{p}$ (mod $2pi$). Done.
answered Nov 22 '18 at 21:00
曾靖國
3868
3868
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006294%2fp-is-adherent-value-of-left-sum-i-1p-z-in-right-n-in-mathbbn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You can tackle the problem by using simultaneous version of the Dirichlet's approximation theorem
– rtybase
Nov 22 '18 at 23:32