quadratic eigenvalue problem reformulation with eigenvalues on unit cycle
$begingroup$
Suppose a quadratic eigenvalue problem is $$(A_2lambda^2+A_1lambda+A_0)x=0$$
where $lambda$ is the eigenvalue and $x$ is the eigenvector. the quadratic form can be rewritten by
$$left[ {begin{array}{*{20}{c}}
0&I\
{{A_0}}&{{A_1}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right] = lambda left[ {begin{array}{*{20}{c}}
I&0\
0&{ - {A_2}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right]$$
Now, suppose $lambda$ is restricted to eigenvalues on unit circles,i.e.,$lambda = frac{{1 + isigma }}{{1 - isigma }}$. I want to further change the equation above as
$$left[ {begin{array}{*{20}{c}}
{ - I}&I\
{{X_1}}&{{X_2}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right] = isigma left[ {begin{array}{*{20}{c}}
I&I\
{{X_3}}&{{X_4}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right]$$
What should $X_{1,2,3,4}$ be?
linear-algebra matrices matrix-calculus
$endgroup$
add a comment |
$begingroup$
Suppose a quadratic eigenvalue problem is $$(A_2lambda^2+A_1lambda+A_0)x=0$$
where $lambda$ is the eigenvalue and $x$ is the eigenvector. the quadratic form can be rewritten by
$$left[ {begin{array}{*{20}{c}}
0&I\
{{A_0}}&{{A_1}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right] = lambda left[ {begin{array}{*{20}{c}}
I&0\
0&{ - {A_2}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right]$$
Now, suppose $lambda$ is restricted to eigenvalues on unit circles,i.e.,$lambda = frac{{1 + isigma }}{{1 - isigma }}$. I want to further change the equation above as
$$left[ {begin{array}{*{20}{c}}
{ - I}&I\
{{X_1}}&{{X_2}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right] = isigma left[ {begin{array}{*{20}{c}}
I&I\
{{X_3}}&{{X_4}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right]$$
What should $X_{1,2,3,4}$ be?
linear-algebra matrices matrix-calculus
$endgroup$
$begingroup$
I'm not sure why you call $lambda$ an "eingenvalue" and $x$ and eigenvector
$endgroup$
– leonbloy
Jan 15 at 17:04
$begingroup$
$lambda$ is the nonlinear eigenvalue of the nonlinear eigenproblem, and $x$ is the corresponding nonlinear eigenvector
$endgroup$
– user4756766
Jan 16 at 0:17
$begingroup$
By using the Caley-transformation and using the characteristics: if $Ay = lambda By$, then $left( {A - B} right)y = isigma left( {A + B} right)y$. one has ${X_1} = {A_0}$, ${X_2} = {A_1}+{A_2}$, ${X_3} = {A_0}$, ${X_4} = {A_1}-{A_2}$,
$endgroup$
– user4756766
Jan 18 at 11:22
add a comment |
$begingroup$
Suppose a quadratic eigenvalue problem is $$(A_2lambda^2+A_1lambda+A_0)x=0$$
where $lambda$ is the eigenvalue and $x$ is the eigenvector. the quadratic form can be rewritten by
$$left[ {begin{array}{*{20}{c}}
0&I\
{{A_0}}&{{A_1}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right] = lambda left[ {begin{array}{*{20}{c}}
I&0\
0&{ - {A_2}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right]$$
Now, suppose $lambda$ is restricted to eigenvalues on unit circles,i.e.,$lambda = frac{{1 + isigma }}{{1 - isigma }}$. I want to further change the equation above as
$$left[ {begin{array}{*{20}{c}}
{ - I}&I\
{{X_1}}&{{X_2}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right] = isigma left[ {begin{array}{*{20}{c}}
I&I\
{{X_3}}&{{X_4}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right]$$
What should $X_{1,2,3,4}$ be?
linear-algebra matrices matrix-calculus
$endgroup$
Suppose a quadratic eigenvalue problem is $$(A_2lambda^2+A_1lambda+A_0)x=0$$
where $lambda$ is the eigenvalue and $x$ is the eigenvector. the quadratic form can be rewritten by
$$left[ {begin{array}{*{20}{c}}
0&I\
{{A_0}}&{{A_1}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right] = lambda left[ {begin{array}{*{20}{c}}
I&0\
0&{ - {A_2}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right]$$
Now, suppose $lambda$ is restricted to eigenvalues on unit circles,i.e.,$lambda = frac{{1 + isigma }}{{1 - isigma }}$. I want to further change the equation above as
$$left[ {begin{array}{*{20}{c}}
{ - I}&I\
{{X_1}}&{{X_2}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right] = isigma left[ {begin{array}{*{20}{c}}
I&I\
{{X_3}}&{{X_4}}
end{array}} right]left[ {begin{array}{*{20}{c}}
x\
{lambda x}
end{array}} right]$$
What should $X_{1,2,3,4}$ be?
linear-algebra matrices matrix-calculus
linear-algebra matrices matrix-calculus
asked Jan 15 at 13:23
user4756766user4756766
357
357
$begingroup$
I'm not sure why you call $lambda$ an "eingenvalue" and $x$ and eigenvector
$endgroup$
– leonbloy
Jan 15 at 17:04
$begingroup$
$lambda$ is the nonlinear eigenvalue of the nonlinear eigenproblem, and $x$ is the corresponding nonlinear eigenvector
$endgroup$
– user4756766
Jan 16 at 0:17
$begingroup$
By using the Caley-transformation and using the characteristics: if $Ay = lambda By$, then $left( {A - B} right)y = isigma left( {A + B} right)y$. one has ${X_1} = {A_0}$, ${X_2} = {A_1}+{A_2}$, ${X_3} = {A_0}$, ${X_4} = {A_1}-{A_2}$,
$endgroup$
– user4756766
Jan 18 at 11:22
add a comment |
$begingroup$
I'm not sure why you call $lambda$ an "eingenvalue" and $x$ and eigenvector
$endgroup$
– leonbloy
Jan 15 at 17:04
$begingroup$
$lambda$ is the nonlinear eigenvalue of the nonlinear eigenproblem, and $x$ is the corresponding nonlinear eigenvector
$endgroup$
– user4756766
Jan 16 at 0:17
$begingroup$
By using the Caley-transformation and using the characteristics: if $Ay = lambda By$, then $left( {A - B} right)y = isigma left( {A + B} right)y$. one has ${X_1} = {A_0}$, ${X_2} = {A_1}+{A_2}$, ${X_3} = {A_0}$, ${X_4} = {A_1}-{A_2}$,
$endgroup$
– user4756766
Jan 18 at 11:22
$begingroup$
I'm not sure why you call $lambda$ an "eingenvalue" and $x$ and eigenvector
$endgroup$
– leonbloy
Jan 15 at 17:04
$begingroup$
I'm not sure why you call $lambda$ an "eingenvalue" and $x$ and eigenvector
$endgroup$
– leonbloy
Jan 15 at 17:04
$begingroup$
$lambda$ is the nonlinear eigenvalue of the nonlinear eigenproblem, and $x$ is the corresponding nonlinear eigenvector
$endgroup$
– user4756766
Jan 16 at 0:17
$begingroup$
$lambda$ is the nonlinear eigenvalue of the nonlinear eigenproblem, and $x$ is the corresponding nonlinear eigenvector
$endgroup$
– user4756766
Jan 16 at 0:17
$begingroup$
By using the Caley-transformation and using the characteristics: if $Ay = lambda By$, then $left( {A - B} right)y = isigma left( {A + B} right)y$. one has ${X_1} = {A_0}$, ${X_2} = {A_1}+{A_2}$, ${X_3} = {A_0}$, ${X_4} = {A_1}-{A_2}$,
$endgroup$
– user4756766
Jan 18 at 11:22
$begingroup$
By using the Caley-transformation and using the characteristics: if $Ay = lambda By$, then $left( {A - B} right)y = isigma left( {A + B} right)y$. one has ${X_1} = {A_0}$, ${X_2} = {A_1}+{A_2}$, ${X_3} = {A_0}$, ${X_4} = {A_1}-{A_2}$,
$endgroup$
– user4756766
Jan 18 at 11:22
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074424%2fquadratic-eigenvalue-problem-reformulation-with-eigenvalues-on-unit-cycle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074424%2fquadratic-eigenvalue-problem-reformulation-with-eigenvalues-on-unit-cycle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I'm not sure why you call $lambda$ an "eingenvalue" and $x$ and eigenvector
$endgroup$
– leonbloy
Jan 15 at 17:04
$begingroup$
$lambda$ is the nonlinear eigenvalue of the nonlinear eigenproblem, and $x$ is the corresponding nonlinear eigenvector
$endgroup$
– user4756766
Jan 16 at 0:17
$begingroup$
By using the Caley-transformation and using the characteristics: if $Ay = lambda By$, then $left( {A - B} right)y = isigma left( {A + B} right)y$. one has ${X_1} = {A_0}$, ${X_2} = {A_1}+{A_2}$, ${X_3} = {A_0}$, ${X_4} = {A_1}-{A_2}$,
$endgroup$
– user4756766
Jan 18 at 11:22