Representation of Gamma function on $0 < operatorname{Re } z < 1$
$begingroup$
I've read that for $0 < operatorname{Re }z < 1$ the Gamma function has the following representation:
$$Gamma(z) = e^{ipi frac{z}{2}} int_0^infty t^{z-1} e^{-it} , dt.$$
I couldn't find any proof of this, does someone have a reference? Your help is appreciated.
integration complex-analysis analysis gamma-function
$endgroup$
add a comment |
$begingroup$
I've read that for $0 < operatorname{Re }z < 1$ the Gamma function has the following representation:
$$Gamma(z) = e^{ipi frac{z}{2}} int_0^infty t^{z-1} e^{-it} , dt.$$
I couldn't find any proof of this, does someone have a reference? Your help is appreciated.
integration complex-analysis analysis gamma-function
$endgroup$
$begingroup$
Let $x=it$$phantom{}$
$endgroup$
– Frank W.
Jan 15 at 19:06
$begingroup$
How is that step justified?
$endgroup$
– bavor42
Jan 15 at 19:36
add a comment |
$begingroup$
I've read that for $0 < operatorname{Re }z < 1$ the Gamma function has the following representation:
$$Gamma(z) = e^{ipi frac{z}{2}} int_0^infty t^{z-1} e^{-it} , dt.$$
I couldn't find any proof of this, does someone have a reference? Your help is appreciated.
integration complex-analysis analysis gamma-function
$endgroup$
I've read that for $0 < operatorname{Re }z < 1$ the Gamma function has the following representation:
$$Gamma(z) = e^{ipi frac{z}{2}} int_0^infty t^{z-1} e^{-it} , dt.$$
I couldn't find any proof of this, does someone have a reference? Your help is appreciated.
integration complex-analysis analysis gamma-function
integration complex-analysis analysis gamma-function
asked Jan 15 at 18:44
bavor42bavor42
315110
315110
$begingroup$
Let $x=it$$phantom{}$
$endgroup$
– Frank W.
Jan 15 at 19:06
$begingroup$
How is that step justified?
$endgroup$
– bavor42
Jan 15 at 19:36
add a comment |
$begingroup$
Let $x=it$$phantom{}$
$endgroup$
– Frank W.
Jan 15 at 19:06
$begingroup$
How is that step justified?
$endgroup$
– bavor42
Jan 15 at 19:36
$begingroup$
Let $x=it$$phantom{}$
$endgroup$
– Frank W.
Jan 15 at 19:06
$begingroup$
Let $x=it$$phantom{}$
$endgroup$
– Frank W.
Jan 15 at 19:06
$begingroup$
How is that step justified?
$endgroup$
– bavor42
Jan 15 at 19:36
$begingroup$
How is that step justified?
$endgroup$
– bavor42
Jan 15 at 19:36
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}
For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}
and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}
$endgroup$
$begingroup$
Really helpful answer. Thank you!
$endgroup$
– bavor42
Jan 15 at 21:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074778%2frepresentation-of-gamma-function-on-0-operatornamere-z-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}
For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}
and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}
$endgroup$
$begingroup$
Really helpful answer. Thank you!
$endgroup$
– bavor42
Jan 15 at 21:14
add a comment |
$begingroup$
For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}
For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}
and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}
$endgroup$
$begingroup$
Really helpful answer. Thank you!
$endgroup$
– bavor42
Jan 15 at 21:14
add a comment |
$begingroup$
For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}
For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}
and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}
$endgroup$
For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}
For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}
and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}
answered Jan 15 at 20:55
ComplexYetTrivialComplexYetTrivial
4,6032631
4,6032631
$begingroup$
Really helpful answer. Thank you!
$endgroup$
– bavor42
Jan 15 at 21:14
add a comment |
$begingroup$
Really helpful answer. Thank you!
$endgroup$
– bavor42
Jan 15 at 21:14
$begingroup$
Really helpful answer. Thank you!
$endgroup$
– bavor42
Jan 15 at 21:14
$begingroup$
Really helpful answer. Thank you!
$endgroup$
– bavor42
Jan 15 at 21:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074778%2frepresentation-of-gamma-function-on-0-operatornamere-z-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Let $x=it$$phantom{}$
$endgroup$
– Frank W.
Jan 15 at 19:06
$begingroup$
How is that step justified?
$endgroup$
– bavor42
Jan 15 at 19:36