Representation of Gamma function on $0 < operatorname{Re } z < 1$












1












$begingroup$


I've read that for $0 < operatorname{Re }z < 1$ the Gamma function has the following representation:



$$Gamma(z) = e^{ipi frac{z}{2}} int_0^infty t^{z-1} e^{-it} , dt.$$
I couldn't find any proof of this, does someone have a reference? Your help is appreciated.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Let $x=it$$phantom{}$
    $endgroup$
    – Frank W.
    Jan 15 at 19:06










  • $begingroup$
    How is that step justified?
    $endgroup$
    – bavor42
    Jan 15 at 19:36
















1












$begingroup$


I've read that for $0 < operatorname{Re }z < 1$ the Gamma function has the following representation:



$$Gamma(z) = e^{ipi frac{z}{2}} int_0^infty t^{z-1} e^{-it} , dt.$$
I couldn't find any proof of this, does someone have a reference? Your help is appreciated.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Let $x=it$$phantom{}$
    $endgroup$
    – Frank W.
    Jan 15 at 19:06










  • $begingroup$
    How is that step justified?
    $endgroup$
    – bavor42
    Jan 15 at 19:36














1












1








1





$begingroup$


I've read that for $0 < operatorname{Re }z < 1$ the Gamma function has the following representation:



$$Gamma(z) = e^{ipi frac{z}{2}} int_0^infty t^{z-1} e^{-it} , dt.$$
I couldn't find any proof of this, does someone have a reference? Your help is appreciated.










share|cite|improve this question









$endgroup$




I've read that for $0 < operatorname{Re }z < 1$ the Gamma function has the following representation:



$$Gamma(z) = e^{ipi frac{z}{2}} int_0^infty t^{z-1} e^{-it} , dt.$$
I couldn't find any proof of this, does someone have a reference? Your help is appreciated.







integration complex-analysis analysis gamma-function






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 15 at 18:44









bavor42bavor42

315110




315110












  • $begingroup$
    Let $x=it$$phantom{}$
    $endgroup$
    – Frank W.
    Jan 15 at 19:06










  • $begingroup$
    How is that step justified?
    $endgroup$
    – bavor42
    Jan 15 at 19:36


















  • $begingroup$
    Let $x=it$$phantom{}$
    $endgroup$
    – Frank W.
    Jan 15 at 19:06










  • $begingroup$
    How is that step justified?
    $endgroup$
    – bavor42
    Jan 15 at 19:36
















$begingroup$
Let $x=it$$phantom{}$
$endgroup$
– Frank W.
Jan 15 at 19:06




$begingroup$
Let $x=it$$phantom{}$
$endgroup$
– Frank W.
Jan 15 at 19:06












$begingroup$
How is that step justified?
$endgroup$
– bavor42
Jan 15 at 19:36




$begingroup$
How is that step justified?
$endgroup$
– bavor42
Jan 15 at 19:36










1 Answer
1






active

oldest

votes


















4












$begingroup$

For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}

For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}

and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Really helpful answer. Thank you!
    $endgroup$
    – bavor42
    Jan 15 at 21:14











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074778%2frepresentation-of-gamma-function-on-0-operatornamere-z-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}

For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}

and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Really helpful answer. Thank you!
    $endgroup$
    – bavor42
    Jan 15 at 21:14
















4












$begingroup$

For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}

For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}

and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Really helpful answer. Thank you!
    $endgroup$
    – bavor42
    Jan 15 at 21:14














4












4








4





$begingroup$

For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}

For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}

and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}






share|cite|improve this answer









$endgroup$



For $R > r>0$ consider the contour consisting of the four paths
begin{align}
&gamma_1 colon [r,R] to mathbb{C} , , , t mapsto t , , \
&gamma_2 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto R mathrm{e}^{mathrm{i} phi} , , \
&gamma_3 colon [r,R] to mathbb{C} , , , s mapsto mathrm{i} (R + r - s) , , \
&gamma_4 colon left[0,frac{pi}{2}right] to mathbb{C} , , , phi mapsto r mathrm{e}^{mathrm{i} left(frac{pi}{2} - phi right)} , . \
end{align}

For $z in mathbb{C}$ with $operatorname{Re} (z) in (0,1)$ the function
$$ f colon mathbb{C}setminus mathbb{R}_{leq 0} to mathbb{C} , , , eta mapsto eta^{z-1} mathrm{e}^{- eta} , ,$$
is holomorphic, so
$$ sum limits_{k=1}^4 int limits_{gamma_k} f(eta) , mathrm{d} eta = 0 $$
holds by Cauchy's integral theorem. We have
begin{align}
left| , int limits_{gamma_2} f(eta) , mathrm{d} eta ,right| &= left| ,int limits_0^{pi/2} (R mathrm{e}^{mathrm{i} phi})^z mathrm{e}^{-R mathrm{e}^{mathrm{i} phi}} mathrm{i} , mathrm{d} phi , right| leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R cos(phi)} , mathrm{d} phi \
&leq R^{operatorname{Re}(z)} mathrm{e}^{pi | operatorname{Im}(z)| /2} int limits_0^{pi/2} mathrm{e}^{- R left(1-frac{2}{pi} phiright)} , mathrm{d} phi = frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-R}) R^{-(1-operatorname{Re}(z))} stackrel{Rto infty}{longrightarrow} 0
end{align}

and, similarly,
$$ left| , int limits_{gamma_4} f(eta) , mathrm{d} eta ,right| leq frac{pi}{2} mathrm{e}^{pi | operatorname{Im}(z)| /2} (1 - mathrm{e}^{-r}) r^{-(1-operatorname{Re}(z))} stackrel{rto 0}{longrightarrow} 0 , .$$
Therefore
begin{align}
Gamma(z) &= int limits_0^infty f(t) , mathrm{d} t = lim_{R to infty} lim_{r to 0} int limits_{gamma_1} f(eta) , mathrm{d} eta = - lim_{R to infty} lim_{r to 0} int limits_{gamma_3} f(eta) , mathrm{d} eta \
&= - lim_{R to infty} lim_{r to 0} int limits_r^R [mathrm{i} (R+r-s)]^{z-1} mathrm{e}^{- mathrm{i} (R+r-s)} (- mathrm{i}) , mathrm{d} s \
&= i^{z} lim_{R to infty} lim_{r to 0} int limits_r^R t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t = mathrm{e}^{mathrm{i} frac{pi}{2} z} int limits_0^infty t^{z-1} mathrm{e}^{-mathrm{i} t} , mathrm{d} t , .
end{align}







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 15 at 20:55









ComplexYetTrivialComplexYetTrivial

4,6032631




4,6032631












  • $begingroup$
    Really helpful answer. Thank you!
    $endgroup$
    – bavor42
    Jan 15 at 21:14


















  • $begingroup$
    Really helpful answer. Thank you!
    $endgroup$
    – bavor42
    Jan 15 at 21:14
















$begingroup$
Really helpful answer. Thank you!
$endgroup$
– bavor42
Jan 15 at 21:14




$begingroup$
Really helpful answer. Thank you!
$endgroup$
– bavor42
Jan 15 at 21:14


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074778%2frepresentation-of-gamma-function-on-0-operatornamere-z-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith