Show that $suplimits_tX_t-t^{p/2}$ and $suplimits_tleft(frac{X_t}{1+t^{p/2}}right)^q$ have the same law












3












$begingroup$


I have a question: Let $X=B^{+}$ or $X=|B|$ where $B$ is the standard Brownian motion.



Set



$$J_p=sup_{tgeq 0}(X_t-t^{frac{p}{2}})$$



where $p>1$ and $q$ its conjugate number($p^{-1}+q^{-1}=1$). Prove $J_p$ is a.s. strictly positive and has the same law as



$$sup_{tgeq 0}left(frac{X_t}{1+t^{frac{p}{2}}}right)^q$$
Thanks a lot for your help!










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    I have a question: Let $X=B^{+}$ or $X=|B|$ where $B$ is the standard Brownian motion.



    Set



    $$J_p=sup_{tgeq 0}(X_t-t^{frac{p}{2}})$$



    where $p>1$ and $q$ its conjugate number($p^{-1}+q^{-1}=1$). Prove $J_p$ is a.s. strictly positive and has the same law as



    $$sup_{tgeq 0}left(frac{X_t}{1+t^{frac{p}{2}}}right)^q$$
    Thanks a lot for your help!










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$


      I have a question: Let $X=B^{+}$ or $X=|B|$ where $B$ is the standard Brownian motion.



      Set



      $$J_p=sup_{tgeq 0}(X_t-t^{frac{p}{2}})$$



      where $p>1$ and $q$ its conjugate number($p^{-1}+q^{-1}=1$). Prove $J_p$ is a.s. strictly positive and has the same law as



      $$sup_{tgeq 0}left(frac{X_t}{1+t^{frac{p}{2}}}right)^q$$
      Thanks a lot for your help!










      share|cite|improve this question











      $endgroup$




      I have a question: Let $X=B^{+}$ or $X=|B|$ where $B$ is the standard Brownian motion.



      Set



      $$J_p=sup_{tgeq 0}(X_t-t^{frac{p}{2}})$$



      where $p>1$ and $q$ its conjugate number($p^{-1}+q^{-1}=1$). Prove $J_p$ is a.s. strictly positive and has the same law as



      $$sup_{tgeq 0}left(frac{X_t}{1+t^{frac{p}{2}}}right)^q$$
      Thanks a lot for your help!







      probability-theory stochastic-calculus brownian-motion






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 11 at 21:56









      Did

      248k23223460




      248k23223460










      asked Jan 27 '13 at 21:23









      Higgs88Higgs88

      427212




      427212






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
          $$
          [J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
          $$
          Choosing $a=x^{1/p}$, one gets
          $$
          [J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
          $$
          where
          $$
          K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
          $$
          This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
          $suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f288358%2fshow-that-sup-limits-tx-t-tp-2-and-sup-limits-t-left-fracx-t1tp-2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
            $$
            [J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
            $$
            Choosing $a=x^{1/p}$, one gets
            $$
            [J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
            $$
            where
            $$
            K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
            $$
            This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
            $suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.






            share|cite|improve this answer









            $endgroup$


















              4












              $begingroup$

              In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
              $$
              [J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
              $$
              Choosing $a=x^{1/p}$, one gets
              $$
              [J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
              $$
              where
              $$
              K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
              $$
              This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
              $suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.






              share|cite|improve this answer









              $endgroup$
















                4












                4








                4





                $begingroup$

                In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
                $$
                [J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
                $$
                Choosing $a=x^{1/p}$, one gets
                $$
                [J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
                $$
                where
                $$
                K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
                $$
                This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
                $suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.






                share|cite|improve this answer









                $endgroup$



                In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
                $$
                [J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
                $$
                Choosing $a=x^{1/p}$, one gets
                $$
                [J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
                $$
                where
                $$
                K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
                $$
                This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
                $suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 30 '13 at 12:20









                DidDid

                248k23223460




                248k23223460






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f288358%2fshow-that-sup-limits-tx-t-tp-2-and-sup-limits-t-left-fracx-t1tp-2%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith