Show that $suplimits_tX_t-t^{p/2}$ and $suplimits_tleft(frac{X_t}{1+t^{p/2}}right)^q$ have the same law
$begingroup$
I have a question: Let $X=B^{+}$ or $X=|B|$ where $B$ is the standard Brownian motion.
Set
$$J_p=sup_{tgeq 0}(X_t-t^{frac{p}{2}})$$
where $p>1$ and $q$ its conjugate number($p^{-1}+q^{-1}=1$). Prove $J_p$ is a.s. strictly positive and has the same law as
$$sup_{tgeq 0}left(frac{X_t}{1+t^{frac{p}{2}}}right)^q$$
Thanks a lot for your help!
probability-theory stochastic-calculus brownian-motion
$endgroup$
add a comment |
$begingroup$
I have a question: Let $X=B^{+}$ or $X=|B|$ where $B$ is the standard Brownian motion.
Set
$$J_p=sup_{tgeq 0}(X_t-t^{frac{p}{2}})$$
where $p>1$ and $q$ its conjugate number($p^{-1}+q^{-1}=1$). Prove $J_p$ is a.s. strictly positive and has the same law as
$$sup_{tgeq 0}left(frac{X_t}{1+t^{frac{p}{2}}}right)^q$$
Thanks a lot for your help!
probability-theory stochastic-calculus brownian-motion
$endgroup$
add a comment |
$begingroup$
I have a question: Let $X=B^{+}$ or $X=|B|$ where $B$ is the standard Brownian motion.
Set
$$J_p=sup_{tgeq 0}(X_t-t^{frac{p}{2}})$$
where $p>1$ and $q$ its conjugate number($p^{-1}+q^{-1}=1$). Prove $J_p$ is a.s. strictly positive and has the same law as
$$sup_{tgeq 0}left(frac{X_t}{1+t^{frac{p}{2}}}right)^q$$
Thanks a lot for your help!
probability-theory stochastic-calculus brownian-motion
$endgroup$
I have a question: Let $X=B^{+}$ or $X=|B|$ where $B$ is the standard Brownian motion.
Set
$$J_p=sup_{tgeq 0}(X_t-t^{frac{p}{2}})$$
where $p>1$ and $q$ its conjugate number($p^{-1}+q^{-1}=1$). Prove $J_p$ is a.s. strictly positive and has the same law as
$$sup_{tgeq 0}left(frac{X_t}{1+t^{frac{p}{2}}}right)^q$$
Thanks a lot for your help!
probability-theory stochastic-calculus brownian-motion
probability-theory stochastic-calculus brownian-motion
edited Jan 11 at 21:56
Did
248k23223460
248k23223460
asked Jan 27 '13 at 21:23


Higgs88Higgs88
427212
427212
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
$$
[J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
$$
Choosing $a=x^{1/p}$, one gets
$$
[J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
$$
where
$$
K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
$$
This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
$suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f288358%2fshow-that-sup-limits-tx-t-tp-2-and-sup-limits-t-left-fracx-t1tp-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
$$
[J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
$$
Choosing $a=x^{1/p}$, one gets
$$
[J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
$$
where
$$
K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
$$
This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
$suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.
$endgroup$
add a comment |
$begingroup$
In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
$$
[J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
$$
Choosing $a=x^{1/p}$, one gets
$$
[J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
$$
where
$$
K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
$$
This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
$suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.
$endgroup$
add a comment |
$begingroup$
In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
$$
[J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
$$
Choosing $a=x^{1/p}$, one gets
$$
[J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
$$
where
$$
K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
$$
This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
$suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.
$endgroup$
In both cases, $(X_t)$ and $(Y_t)$ coincide in law where $Y_t=a^{-1}X_{a^2t}$ for some $agt0$. Fix $xgt0$, then
$$
[J_pleqslant x]=[forall t,X_tleqslant x+t^{p/2}]=[forall t,Y_{t}leqslant a^{-1}x+a^{p-1}t^{p/2}].
$$
Choosing $a=x^{1/p}$, one gets
$$
[J_pleqslant x]=[forall t,Y_tleqslant x^{1/q}+x^{1/q}t^{p/2}]=[forall t,(1+t^{p/2})^{-q}Y_t^qleqslant x]=[K_pleqslant x],
$$
where
$$
K_p=suplimits_{tgeqslant0},(1+t^{p/2})^{-q}Y_t^q.
$$
This holds for every $x$ hence $J_p=K_p$ almost surely. Finally, $(X_t)$ and $(Y_t)$ coincide in distribution hence $J_p$ coincides in distribution with
$suplimits_{tgeqslant0}, Z_t^q$, where $Z_t=X_t/(1+t^{p/2})$.
answered Jan 30 '13 at 12:20
DidDid
248k23223460
248k23223460
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f288358%2fshow-that-sup-limits-tx-t-tp-2-and-sup-limits-t-left-fracx-t1tp-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown