Surface integrals, positive or negative normal?
$begingroup$
I'm unsure how to decide whether the normal should be positive or negative in $hat{n}dS=pm h_2 h_3 e_1 du_2 du_3$, where $h_i$ are the scale factors, $e_i $ are the base vectors, and $u_i$ are the curvilinear coordinates.
So for example, in spherical coordinate with $r, theta, phi$, and $S: 0<rleq2, theta = frac{pi}{4}, 0<phileq pi $. Orientation is given as $ hat{n} cdot e_z > 0 $. Here how do I know that $hat{n}dS = pm e_theta h_r h_phi dr d phi = -e_theta sin theta dr dphi $, it should be a negative?
calculus integration vectors vector-analysis orthonormal
$endgroup$
add a comment |
$begingroup$
I'm unsure how to decide whether the normal should be positive or negative in $hat{n}dS=pm h_2 h_3 e_1 du_2 du_3$, where $h_i$ are the scale factors, $e_i $ are the base vectors, and $u_i$ are the curvilinear coordinates.
So for example, in spherical coordinate with $r, theta, phi$, and $S: 0<rleq2, theta = frac{pi}{4}, 0<phileq pi $. Orientation is given as $ hat{n} cdot e_z > 0 $. Here how do I know that $hat{n}dS = pm e_theta h_r h_phi dr d phi = -e_theta sin theta dr dphi $, it should be a negative?
calculus integration vectors vector-analysis orthonormal
$endgroup$
add a comment |
$begingroup$
I'm unsure how to decide whether the normal should be positive or negative in $hat{n}dS=pm h_2 h_3 e_1 du_2 du_3$, where $h_i$ are the scale factors, $e_i $ are the base vectors, and $u_i$ are the curvilinear coordinates.
So for example, in spherical coordinate with $r, theta, phi$, and $S: 0<rleq2, theta = frac{pi}{4}, 0<phileq pi $. Orientation is given as $ hat{n} cdot e_z > 0 $. Here how do I know that $hat{n}dS = pm e_theta h_r h_phi dr d phi = -e_theta sin theta dr dphi $, it should be a negative?
calculus integration vectors vector-analysis orthonormal
$endgroup$
I'm unsure how to decide whether the normal should be positive or negative in $hat{n}dS=pm h_2 h_3 e_1 du_2 du_3$, where $h_i$ are the scale factors, $e_i $ are the base vectors, and $u_i$ are the curvilinear coordinates.
So for example, in spherical coordinate with $r, theta, phi$, and $S: 0<rleq2, theta = frac{pi}{4}, 0<phileq pi $. Orientation is given as $ hat{n} cdot e_z > 0 $. Here how do I know that $hat{n}dS = pm e_theta h_r h_phi dr d phi = -e_theta sin theta dr dphi $, it should be a negative?
calculus integration vectors vector-analysis orthonormal
calculus integration vectors vector-analysis orthonormal
asked Jan 15 at 1:19
user3221454user3221454
174
174
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073964%2fsurface-integrals-positive-or-negative-normal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073964%2fsurface-integrals-positive-or-negative-normal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown