Integral with sine inside log












0












$begingroup$


I want to evaluate the value of the following integral:
$$int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx$$



i have tried 2 methods, but fail to proceed.



1.
begin{align*}
I&=int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx\
frac{dI}{da}&=int_0^frac{pi}{2}frac{2}{1-a^2*sin^4{a}}dx\
&=int_0^frac{pi}{2}frac{1}{1-a*sin^2{x}}+frac{1}{1+a*sin^2{x}}dx
end{align*}



2.
using $u=ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}$ and $dv=frac{dx}{sin^2{x}}$
we have
begin{align*}
I&=bigg[-cot{x}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}bigg]_0^frac{pi}{2}+4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx\
&=4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx
end{align*}

which is similar to the first one










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I want to evaluate the value of the following integral:
    $$int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx$$



    i have tried 2 methods, but fail to proceed.



    1.
    begin{align*}
    I&=int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx\
    frac{dI}{da}&=int_0^frac{pi}{2}frac{2}{1-a^2*sin^4{a}}dx\
    &=int_0^frac{pi}{2}frac{1}{1-a*sin^2{x}}+frac{1}{1+a*sin^2{x}}dx
    end{align*}



    2.
    using $u=ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}$ and $dv=frac{dx}{sin^2{x}}$
    we have
    begin{align*}
    I&=bigg[-cot{x}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}bigg]_0^frac{pi}{2}+4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx\
    &=4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx
    end{align*}

    which is similar to the first one










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I want to evaluate the value of the following integral:
      $$int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx$$



      i have tried 2 methods, but fail to proceed.



      1.
      begin{align*}
      I&=int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx\
      frac{dI}{da}&=int_0^frac{pi}{2}frac{2}{1-a^2*sin^4{a}}dx\
      &=int_0^frac{pi}{2}frac{1}{1-a*sin^2{x}}+frac{1}{1+a*sin^2{x}}dx
      end{align*}



      2.
      using $u=ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}$ and $dv=frac{dx}{sin^2{x}}$
      we have
      begin{align*}
      I&=bigg[-cot{x}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}bigg]_0^frac{pi}{2}+4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx\
      &=4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx
      end{align*}

      which is similar to the first one










      share|cite|improve this question









      $endgroup$




      I want to evaluate the value of the following integral:
      $$int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx$$



      i have tried 2 methods, but fail to proceed.



      1.
      begin{align*}
      I&=int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx\
      frac{dI}{da}&=int_0^frac{pi}{2}frac{2}{1-a^2*sin^4{a}}dx\
      &=int_0^frac{pi}{2}frac{1}{1-a*sin^2{x}}+frac{1}{1+a*sin^2{x}}dx
      end{align*}



      2.
      using $u=ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}$ and $dv=frac{dx}{sin^2{x}}$
      we have
      begin{align*}
      I&=bigg[-cot{x}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}bigg]_0^frac{pi}{2}+4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx\
      &=4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx
      end{align*}

      which is similar to the first one







      definite-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 24 at 8:09









      Reynan HenryReynan Henry

      751




      751






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Try this:



          $$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$



          $$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
          $$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
          int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
          int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
          $$



          Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Considering
            $$I=intfrac{dx}{1-a sin ^2(x)}$$ let
            $$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
            $$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085600%2fintegral-with-sine-inside-log%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Try this:



              $$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$



              $$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
              $$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
              int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
              int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
              $$



              Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Try this:



                $$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$



                $$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
                $$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
                int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
                int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
                $$



                Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Try this:



                  $$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$



                  $$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
                  $$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
                  int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
                  int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
                  $$



                  Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).






                  share|cite|improve this answer









                  $endgroup$



                  Try this:



                  $$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$



                  $$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
                  $$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
                  int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
                  int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
                  $$



                  Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 24 at 8:30









                  orionorion

                  13.7k11837




                  13.7k11837























                      0












                      $begingroup$

                      Considering
                      $$I=intfrac{dx}{1-a sin ^2(x)}$$ let
                      $$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
                      $$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Considering
                        $$I=intfrac{dx}{1-a sin ^2(x)}$$ let
                        $$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
                        $$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Considering
                          $$I=intfrac{dx}{1-a sin ^2(x)}$$ let
                          $$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
                          $$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other






                          share|cite|improve this answer









                          $endgroup$



                          Considering
                          $$I=intfrac{dx}{1-a sin ^2(x)}$$ let
                          $$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
                          $$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 24 at 8:30









                          Claude LeiboviciClaude Leibovici

                          124k1157135




                          124k1157135






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085600%2fintegral-with-sine-inside-log%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                              How to fix TextFormField cause rebuild widget in Flutter