Integral with sine inside log
$begingroup$
I want to evaluate the value of the following integral:
$$int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx$$
i have tried 2 methods, but fail to proceed.
1.
begin{align*}
I&=int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx\
frac{dI}{da}&=int_0^frac{pi}{2}frac{2}{1-a^2*sin^4{a}}dx\
&=int_0^frac{pi}{2}frac{1}{1-a*sin^2{x}}+frac{1}{1+a*sin^2{x}}dx
end{align*}
2.
using $u=ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}$ and $dv=frac{dx}{sin^2{x}}$
we have
begin{align*}
I&=bigg[-cot{x}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}bigg]_0^frac{pi}{2}+4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx\
&=4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx
end{align*}
which is similar to the first one
definite-integrals
$endgroup$
add a comment |
$begingroup$
I want to evaluate the value of the following integral:
$$int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx$$
i have tried 2 methods, but fail to proceed.
1.
begin{align*}
I&=int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx\
frac{dI}{da}&=int_0^frac{pi}{2}frac{2}{1-a^2*sin^4{a}}dx\
&=int_0^frac{pi}{2}frac{1}{1-a*sin^2{x}}+frac{1}{1+a*sin^2{x}}dx
end{align*}
2.
using $u=ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}$ and $dv=frac{dx}{sin^2{x}}$
we have
begin{align*}
I&=bigg[-cot{x}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}bigg]_0^frac{pi}{2}+4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx\
&=4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx
end{align*}
which is similar to the first one
definite-integrals
$endgroup$
add a comment |
$begingroup$
I want to evaluate the value of the following integral:
$$int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx$$
i have tried 2 methods, but fail to proceed.
1.
begin{align*}
I&=int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx\
frac{dI}{da}&=int_0^frac{pi}{2}frac{2}{1-a^2*sin^4{a}}dx\
&=int_0^frac{pi}{2}frac{1}{1-a*sin^2{x}}+frac{1}{1+a*sin^2{x}}dx
end{align*}
2.
using $u=ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}$ and $dv=frac{dx}{sin^2{x}}$
we have
begin{align*}
I&=bigg[-cot{x}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}bigg]_0^frac{pi}{2}+4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx\
&=4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx
end{align*}
which is similar to the first one
definite-integrals
$endgroup$
I want to evaluate the value of the following integral:
$$int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx$$
i have tried 2 methods, but fail to proceed.
1.
begin{align*}
I&=int_0^frac{pi}{2}frac{1}{sin^2{x}}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}dx\
frac{dI}{da}&=int_0^frac{pi}{2}frac{2}{1-a^2*sin^4{a}}dx\
&=int_0^frac{pi}{2}frac{1}{1-a*sin^2{x}}+frac{1}{1+a*sin^2{x}}dx
end{align*}
2.
using $u=ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}$ and $dv=frac{dx}{sin^2{x}}$
we have
begin{align*}
I&=bigg[-cot{x}ln{frac{1+a*sin^2{x}}{1-a*sin^2{x}}}bigg]_0^frac{pi}{2}+4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx\
&=4aint_0^frac{pi}{2}frac{cos^2{x}}{1-a^2*sin^4{x}}dx
end{align*}
which is similar to the first one
definite-integrals
definite-integrals
asked Jan 24 at 8:09
Reynan HenryReynan Henry
751
751
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Try this:
$$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$
$$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
$$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
$$
Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).
$endgroup$
add a comment |
$begingroup$
Considering
$$I=intfrac{dx}{1-a sin ^2(x)}$$ let
$$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
$$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085600%2fintegral-with-sine-inside-log%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Try this:
$$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$
$$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
$$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
$$
Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).
$endgroup$
add a comment |
$begingroup$
Try this:
$$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$
$$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
$$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
$$
Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).
$endgroup$
add a comment |
$begingroup$
Try this:
$$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$
$$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
$$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
$$
Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).
$endgroup$
Try this:
$$t=cot x;quad dt=-frac{dx}{sin^2 x};frac{1}{sin^2 x}=1+t^2$$
$$I=int_0^{pi/2}frac{1}{sin^2 x}lnfrac{1+asin^2 x}{1-asin^2 x}dx$$
$$I=-int_{infty}^{0}lnfrac{1+asin^2 x}{1-asin^2 x}dt=
int_0^inftylnfrac{1/sin^2 x+a}{1/sin^2 x-a}dt=
int_0^inftylnfrac{1+t^2+a}{1+t^2-a}dt
$$
Now you can consider separately just the indefinite integral $intln(t^2+b)dt$ by integration by parts, or proceed with differentiation with respect to $a$ (and then further proceeding, knowing that $I(a=0)=0$).
answered Jan 24 at 8:30
orionorion
13.7k11837
13.7k11837
add a comment |
add a comment |
$begingroup$
Considering
$$I=intfrac{dx}{1-a sin ^2(x)}$$ let
$$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
$$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other
$endgroup$
add a comment |
$begingroup$
Considering
$$I=intfrac{dx}{1-a sin ^2(x)}$$ let
$$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
$$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other
$endgroup$
add a comment |
$begingroup$
Considering
$$I=intfrac{dx}{1-a sin ^2(x)}$$ let
$$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
$$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other
$endgroup$
Considering
$$I=intfrac{dx}{1-a sin ^2(x)}$$ let
$$tan(x)=t implies x=tan ^{-1}(t) implies dx=frac{dt}{1+t^2}$$ which make
$$I=intfrac{dt}{1-(a-1) t^2}=frac{tanh ^{-1}left(sqrt{a-1} tright)}{sqrt{a-1}}$$ Just do the same for the other
answered Jan 24 at 8:30
Claude LeiboviciClaude Leibovici
124k1157135
124k1157135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085600%2fintegral-with-sine-inside-log%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown