Joint distribution of a Dirichlet with repeating components












1












$begingroup$


Let $(X_1, dots, X_k) sim Dir(alpha_1, dots, alpha_k)$. If we let $Z_1 = X_1+X_2$, what would the joint distribution of $X_1, Z_1$ be? Same with the posterior distribution of $X_1$ given $Z_1$?



I know that the distribution of $Z_1$ is $Dir(alpha_1+alpha_2, sum_{i=3}^{k} alpha_i)$ and that the distribution of $X_1$ is $Beta(alpha_1, sum_{i=2}^{k} alpha_i)$, but I don't know how to combine the two to get their joint distribution.



Based on the properties I've found, I'd have guessed something like $(X_1, Z_1, 1-X_1-Z_1) sim Dir(alpha_1, alpha_1+alpha_2, 1-2alpha_1-alpha_2$), but the fact that the $alpha_1$ is repeating doesn't seem right to me










share|cite|improve this question











$endgroup$












  • $begingroup$
    What have you tried? Where is it that you are stucked?
    $endgroup$
    – Alejandro Nasif Salum
    Jan 24 at 5:32










  • $begingroup$
    I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
    $endgroup$
    – David Kang
    Jan 24 at 6:43
















1












$begingroup$


Let $(X_1, dots, X_k) sim Dir(alpha_1, dots, alpha_k)$. If we let $Z_1 = X_1+X_2$, what would the joint distribution of $X_1, Z_1$ be? Same with the posterior distribution of $X_1$ given $Z_1$?



I know that the distribution of $Z_1$ is $Dir(alpha_1+alpha_2, sum_{i=3}^{k} alpha_i)$ and that the distribution of $X_1$ is $Beta(alpha_1, sum_{i=2}^{k} alpha_i)$, but I don't know how to combine the two to get their joint distribution.



Based on the properties I've found, I'd have guessed something like $(X_1, Z_1, 1-X_1-Z_1) sim Dir(alpha_1, alpha_1+alpha_2, 1-2alpha_1-alpha_2$), but the fact that the $alpha_1$ is repeating doesn't seem right to me










share|cite|improve this question











$endgroup$












  • $begingroup$
    What have you tried? Where is it that you are stucked?
    $endgroup$
    – Alejandro Nasif Salum
    Jan 24 at 5:32










  • $begingroup$
    I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
    $endgroup$
    – David Kang
    Jan 24 at 6:43














1












1








1


1



$begingroup$


Let $(X_1, dots, X_k) sim Dir(alpha_1, dots, alpha_k)$. If we let $Z_1 = X_1+X_2$, what would the joint distribution of $X_1, Z_1$ be? Same with the posterior distribution of $X_1$ given $Z_1$?



I know that the distribution of $Z_1$ is $Dir(alpha_1+alpha_2, sum_{i=3}^{k} alpha_i)$ and that the distribution of $X_1$ is $Beta(alpha_1, sum_{i=2}^{k} alpha_i)$, but I don't know how to combine the two to get their joint distribution.



Based on the properties I've found, I'd have guessed something like $(X_1, Z_1, 1-X_1-Z_1) sim Dir(alpha_1, alpha_1+alpha_2, 1-2alpha_1-alpha_2$), but the fact that the $alpha_1$ is repeating doesn't seem right to me










share|cite|improve this question











$endgroup$




Let $(X_1, dots, X_k) sim Dir(alpha_1, dots, alpha_k)$. If we let $Z_1 = X_1+X_2$, what would the joint distribution of $X_1, Z_1$ be? Same with the posterior distribution of $X_1$ given $Z_1$?



I know that the distribution of $Z_1$ is $Dir(alpha_1+alpha_2, sum_{i=3}^{k} alpha_i)$ and that the distribution of $X_1$ is $Beta(alpha_1, sum_{i=2}^{k} alpha_i)$, but I don't know how to combine the two to get their joint distribution.



Based on the properties I've found, I'd have guessed something like $(X_1, Z_1, 1-X_1-Z_1) sim Dir(alpha_1, alpha_1+alpha_2, 1-2alpha_1-alpha_2$), but the fact that the $alpha_1$ is repeating doesn't seem right to me







probability bayesian






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 19:31







David Kang

















asked Jan 24 at 5:26









David KangDavid Kang

204




204












  • $begingroup$
    What have you tried? Where is it that you are stucked?
    $endgroup$
    – Alejandro Nasif Salum
    Jan 24 at 5:32










  • $begingroup$
    I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
    $endgroup$
    – David Kang
    Jan 24 at 6:43


















  • $begingroup$
    What have you tried? Where is it that you are stucked?
    $endgroup$
    – Alejandro Nasif Salum
    Jan 24 at 5:32










  • $begingroup$
    I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
    $endgroup$
    – David Kang
    Jan 24 at 6:43
















$begingroup$
What have you tried? Where is it that you are stucked?
$endgroup$
– Alejandro Nasif Salum
Jan 24 at 5:32




$begingroup$
What have you tried? Where is it that you are stucked?
$endgroup$
– Alejandro Nasif Salum
Jan 24 at 5:32












$begingroup$
I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
$endgroup$
– David Kang
Jan 24 at 6:43




$begingroup$
I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
$endgroup$
– David Kang
Jan 24 at 6:43










1 Answer
1






active

oldest

votes


















1












$begingroup$

The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.



Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.



The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$





Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:



Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Thanks so much for your response!
    $endgroup$
    – David Kang
    Jan 25 at 19:52










  • $begingroup$
    Glad I could help!
    $endgroup$
    – Alex
    Jan 25 at 22:59











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085497%2fjoint-distribution-of-a-dirichlet-with-repeating-components%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.



Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.



The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$





Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:



Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Thanks so much for your response!
    $endgroup$
    – David Kang
    Jan 25 at 19:52










  • $begingroup$
    Glad I could help!
    $endgroup$
    – Alex
    Jan 25 at 22:59
















1












$begingroup$

The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.



Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.



The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$





Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:



Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Thanks so much for your response!
    $endgroup$
    – David Kang
    Jan 25 at 19:52










  • $begingroup$
    Glad I could help!
    $endgroup$
    – Alex
    Jan 25 at 22:59














1












1








1





$begingroup$

The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.



Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.



The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$





Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:



Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$






share|cite|improve this answer











$endgroup$



The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.



Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.



The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$





Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:



Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 25 at 7:51

























answered Jan 25 at 7:34









AlexAlex

709412




709412








  • 1




    $begingroup$
    Thanks so much for your response!
    $endgroup$
    – David Kang
    Jan 25 at 19:52










  • $begingroup$
    Glad I could help!
    $endgroup$
    – Alex
    Jan 25 at 22:59














  • 1




    $begingroup$
    Thanks so much for your response!
    $endgroup$
    – David Kang
    Jan 25 at 19:52










  • $begingroup$
    Glad I could help!
    $endgroup$
    – Alex
    Jan 25 at 22:59








1




1




$begingroup$
Thanks so much for your response!
$endgroup$
– David Kang
Jan 25 at 19:52




$begingroup$
Thanks so much for your response!
$endgroup$
– David Kang
Jan 25 at 19:52












$begingroup$
Glad I could help!
$endgroup$
– Alex
Jan 25 at 22:59




$begingroup$
Glad I could help!
$endgroup$
– Alex
Jan 25 at 22:59


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085497%2fjoint-distribution-of-a-dirichlet-with-repeating-components%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith