Joint distribution of a Dirichlet with repeating components
$begingroup$
Let $(X_1, dots, X_k) sim Dir(alpha_1, dots, alpha_k)$. If we let $Z_1 = X_1+X_2$, what would the joint distribution of $X_1, Z_1$ be? Same with the posterior distribution of $X_1$ given $Z_1$?
I know that the distribution of $Z_1$ is $Dir(alpha_1+alpha_2, sum_{i=3}^{k} alpha_i)$ and that the distribution of $X_1$ is $Beta(alpha_1, sum_{i=2}^{k} alpha_i)$, but I don't know how to combine the two to get their joint distribution.
Based on the properties I've found, I'd have guessed something like $(X_1, Z_1, 1-X_1-Z_1) sim Dir(alpha_1, alpha_1+alpha_2, 1-2alpha_1-alpha_2$), but the fact that the $alpha_1$ is repeating doesn't seem right to me
probability bayesian
$endgroup$
add a comment |
$begingroup$
Let $(X_1, dots, X_k) sim Dir(alpha_1, dots, alpha_k)$. If we let $Z_1 = X_1+X_2$, what would the joint distribution of $X_1, Z_1$ be? Same with the posterior distribution of $X_1$ given $Z_1$?
I know that the distribution of $Z_1$ is $Dir(alpha_1+alpha_2, sum_{i=3}^{k} alpha_i)$ and that the distribution of $X_1$ is $Beta(alpha_1, sum_{i=2}^{k} alpha_i)$, but I don't know how to combine the two to get their joint distribution.
Based on the properties I've found, I'd have guessed something like $(X_1, Z_1, 1-X_1-Z_1) sim Dir(alpha_1, alpha_1+alpha_2, 1-2alpha_1-alpha_2$), but the fact that the $alpha_1$ is repeating doesn't seem right to me
probability bayesian
$endgroup$
$begingroup$
What have you tried? Where is it that you are stucked?
$endgroup$
– Alejandro Nasif Salum
Jan 24 at 5:32
$begingroup$
I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
$endgroup$
– David Kang
Jan 24 at 6:43
add a comment |
$begingroup$
Let $(X_1, dots, X_k) sim Dir(alpha_1, dots, alpha_k)$. If we let $Z_1 = X_1+X_2$, what would the joint distribution of $X_1, Z_1$ be? Same with the posterior distribution of $X_1$ given $Z_1$?
I know that the distribution of $Z_1$ is $Dir(alpha_1+alpha_2, sum_{i=3}^{k} alpha_i)$ and that the distribution of $X_1$ is $Beta(alpha_1, sum_{i=2}^{k} alpha_i)$, but I don't know how to combine the two to get their joint distribution.
Based on the properties I've found, I'd have guessed something like $(X_1, Z_1, 1-X_1-Z_1) sim Dir(alpha_1, alpha_1+alpha_2, 1-2alpha_1-alpha_2$), but the fact that the $alpha_1$ is repeating doesn't seem right to me
probability bayesian
$endgroup$
Let $(X_1, dots, X_k) sim Dir(alpha_1, dots, alpha_k)$. If we let $Z_1 = X_1+X_2$, what would the joint distribution of $X_1, Z_1$ be? Same with the posterior distribution of $X_1$ given $Z_1$?
I know that the distribution of $Z_1$ is $Dir(alpha_1+alpha_2, sum_{i=3}^{k} alpha_i)$ and that the distribution of $X_1$ is $Beta(alpha_1, sum_{i=2}^{k} alpha_i)$, but I don't know how to combine the two to get their joint distribution.
Based on the properties I've found, I'd have guessed something like $(X_1, Z_1, 1-X_1-Z_1) sim Dir(alpha_1, alpha_1+alpha_2, 1-2alpha_1-alpha_2$), but the fact that the $alpha_1$ is repeating doesn't seem right to me
probability bayesian
probability bayesian
edited Jan 24 at 19:31
David Kang
asked Jan 24 at 5:26
David KangDavid Kang
204
204
$begingroup$
What have you tried? Where is it that you are stucked?
$endgroup$
– Alejandro Nasif Salum
Jan 24 at 5:32
$begingroup$
I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
$endgroup$
– David Kang
Jan 24 at 6:43
add a comment |
$begingroup$
What have you tried? Where is it that you are stucked?
$endgroup$
– Alejandro Nasif Salum
Jan 24 at 5:32
$begingroup$
I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
$endgroup$
– David Kang
Jan 24 at 6:43
$begingroup$
What have you tried? Where is it that you are stucked?
$endgroup$
– Alejandro Nasif Salum
Jan 24 at 5:32
$begingroup$
What have you tried? Where is it that you are stucked?
$endgroup$
– Alejandro Nasif Salum
Jan 24 at 5:32
$begingroup$
I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
$endgroup$
– David Kang
Jan 24 at 6:43
$begingroup$
I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
$endgroup$
– David Kang
Jan 24 at 6:43
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.
Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.
The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$
Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:
Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$
$endgroup$
1
$begingroup$
Thanks so much for your response!
$endgroup$
– David Kang
Jan 25 at 19:52
$begingroup$
Glad I could help!
$endgroup$
– Alex
Jan 25 at 22:59
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085497%2fjoint-distribution-of-a-dirichlet-with-repeating-components%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.
Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.
The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$
Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:
Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$
$endgroup$
1
$begingroup$
Thanks so much for your response!
$endgroup$
– David Kang
Jan 25 at 19:52
$begingroup$
Glad I could help!
$endgroup$
– Alex
Jan 25 at 22:59
add a comment |
$begingroup$
The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.
Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.
The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$
Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:
Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$
$endgroup$
1
$begingroup$
Thanks so much for your response!
$endgroup$
– David Kang
Jan 25 at 19:52
$begingroup$
Glad I could help!
$endgroup$
– Alex
Jan 25 at 22:59
add a comment |
$begingroup$
The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.
Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.
The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$
Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:
Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$
$endgroup$
The distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$ (proof below). Therefore the joint density of $(X_1, X_2)$ is
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x_1, x_2 > 0$ and $x_1 + x_2 < 1$.
Now we do a transformation of variables: Let $Z = X_1 + X_2$ and $X = X_1$ (I'm using $Z, X$ instead of $Z_1, X_1$ because, later on, the subscripts look messy otherwise). Then
$$f_{X, Z}(x, z) = f_{X_1, X_2}(x_1(x, z), x_2(x, z))left|detleft(frac{d(x_1, x_2)}{d(x, z)} right) right|.$$
The Jacobian here is $1$ and so the joint density is
$$f_{X, Z}(x, z) = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1},$$
where $x > 0$, $z > x$ and $z < 1$.
The marginal density of $Z$ is $text{Dir}(alpha_1 + alpha_2, sum_{i = 3}^{n} alpha_i)$, so the conditional density of $X$ given $Z$ is
$$f_{X mid Z}(x mid z) = frac{f_{X, Z}(x, z)}{f_{Z}(z)} = frac{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}x^{alpha_1 - 1}(z - x_1)^{alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}}{frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1} + alpha_{2})Gamma(sum_{i = 3}^{n}alpha_i)}z^{alpha_1 + alpha_2 - 1}(1 - z)^{(sum_{i = 3}^n alpha_i) - 1}},$$
which simplifies to
$$f_{X mid Z}(x mid z) = frac{1}{z}frac{Gamma(alpha_1 + alpha_2)}{Gamma(alpha_1)Gamma(alpha_2)}left(frac{x}{z}right)^{alpha_1 - 1}left(1 - frac{x}{z}right)^{alpha_2 - 1}.$$
Proof that the distribution of $(X_1, X_2)$ is given by $text{Dir}(alpha_1, alpha_2, sum_{i = 3}^{n} alpha_i)$:
Let $I(x, k, n) = {(x_k, dots, x_n): x_k, dots, x_n > 0, sum_{i = k}^n x_i = x}$. We know that $X_1 sim text{Beta}(alpha_1, sum_{i = 2}^{n} alpha_i)$. Therefore
$$int_{I(1 - x_1, 2, n)} f_{X_1, dots, X_n}(x_1, dots, x_n) dx_2cdots dx_n = frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(sum_{i = 2}^{n}alpha_i)}x_1^{alpha_1 - 1}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Hence
$$int_{I(1 - x_1, 2, n)} x_2^{alpha_2 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n = frac{Gamma(alpha_2)cdotsGamma(alpha_n)}{Gamma(sum_{i = 2}^n alpha_i)}(1 - x_1)^{(sum_{i = 2}^n alpha_i) - 1}.$$
Therefore
$$f_{X_1, X_2}(x_1, x_2) = frac{Gamma(sum_{i = 1}^n alpha_i)}{Gamma(alpha_1)cdotsGamma(alpha_n)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1} int_{I(1 - x_1 - x_2, 3, n)} x_3^{alpha_3 - 1}cdots x_n^{alpha_n - 1} dx_2cdots dx_n$$
$$= frac{Gamma(sum_{i = 1}^{n}alpha_i)}{Gamma(alpha_{1})Gamma(alpha_2)Gamma(sum_{i = 3}^{n}alpha_i)}x_1^{alpha_1 - 1}x_2^{alpha_2 - 1}(1 - x_1 - x_2)^{(sum_{i = 3}^n alpha_i) - 1}$$
edited Jan 25 at 7:51
answered Jan 25 at 7:34


AlexAlex
709412
709412
1
$begingroup$
Thanks so much for your response!
$endgroup$
– David Kang
Jan 25 at 19:52
$begingroup$
Glad I could help!
$endgroup$
– Alex
Jan 25 at 22:59
add a comment |
1
$begingroup$
Thanks so much for your response!
$endgroup$
– David Kang
Jan 25 at 19:52
$begingroup$
Glad I could help!
$endgroup$
– Alex
Jan 25 at 22:59
1
1
$begingroup$
Thanks so much for your response!
$endgroup$
– David Kang
Jan 25 at 19:52
$begingroup$
Thanks so much for your response!
$endgroup$
– David Kang
Jan 25 at 19:52
$begingroup$
Glad I could help!
$endgroup$
– Alex
Jan 25 at 22:59
$begingroup$
Glad I could help!
$endgroup$
– Alex
Jan 25 at 22:59
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085497%2fjoint-distribution-of-a-dirichlet-with-repeating-components%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What have you tried? Where is it that you are stucked?
$endgroup$
– Alejandro Nasif Salum
Jan 24 at 5:32
$begingroup$
I was just having trouble with the fact that $X_1$ is repeating. Do we subtract $alpha_1$ from the sum of $alpha$'s twice?
$endgroup$
– David Kang
Jan 24 at 6:43