Operator norm $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$












0












$begingroup$


My teacher defined the operator norm as $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$. I'm not really sure if I understand this definition, so, can anyone explain it to me, for example, let $A$ be $begin{pmatrix}1&3\ 5&7end{pmatrix}$. Or if it has to be with functions, let $A$ be $begin{pmatrix}x&3x\ 5x&7xend{pmatrix}$.



Thank you.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
    $endgroup$
    – Anthony Ter
    Jan 22 at 0:27


















0












$begingroup$


My teacher defined the operator norm as $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$. I'm not really sure if I understand this definition, so, can anyone explain it to me, for example, let $A$ be $begin{pmatrix}1&3\ 5&7end{pmatrix}$. Or if it has to be with functions, let $A$ be $begin{pmatrix}x&3x\ 5x&7xend{pmatrix}$.



Thank you.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
    $endgroup$
    – Anthony Ter
    Jan 22 at 0:27
















0












0








0





$begingroup$


My teacher defined the operator norm as $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$. I'm not really sure if I understand this definition, so, can anyone explain it to me, for example, let $A$ be $begin{pmatrix}1&3\ 5&7end{pmatrix}$. Or if it has to be with functions, let $A$ be $begin{pmatrix}x&3x\ 5x&7xend{pmatrix}$.



Thank you.










share|cite|improve this question









$endgroup$




My teacher defined the operator norm as $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$. I'm not really sure if I understand this definition, so, can anyone explain it to me, for example, let $A$ be $begin{pmatrix}1&3\ 5&7end{pmatrix}$. Or if it has to be with functions, let $A$ be $begin{pmatrix}x&3x\ 5x&7xend{pmatrix}$.



Thank you.







matrices eigenvalues-eigenvectors norm






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 22 at 0:18









user25568user25568

1138




1138








  • 2




    $begingroup$
    $A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
    $endgroup$
    – Anthony Ter
    Jan 22 at 0:27
















  • 2




    $begingroup$
    $A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
    $endgroup$
    – Anthony Ter
    Jan 22 at 0:27










2




2




$begingroup$
$A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
$endgroup$
– Anthony Ter
Jan 22 at 0:27






$begingroup$
$A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
$endgroup$
– Anthony Ter
Jan 22 at 0:27












2 Answers
2






active

oldest

votes


















1












$begingroup$

Using the example provided, the operator norm of $A$ is the quantity,
$$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let's look at an example: take
    $$
    A = pmatrix{3&1\1&3}
    $$

    we have
    $$
    A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
    $$

    So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
    $$
    sup_{xneq 0} frac{|Ax|}{|x|}
    = sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
    $$

    For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
    $$
    frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
    $$

    So that
    $$
    sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
    sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
    $$

    so that in this case, $|A| = 5$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082592%2foperator-norm-a-sup-x-neq-0-fracaxx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Using the example provided, the operator norm of $A$ is the quantity,
      $$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Using the example provided, the operator norm of $A$ is the quantity,
        $$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Using the example provided, the operator norm of $A$ is the quantity,
          $$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$






          share|cite|improve this answer









          $endgroup$



          Using the example provided, the operator norm of $A$ is the quantity,
          $$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 22 at 0:30









          Theo BenditTheo Bendit

          19.3k12353




          19.3k12353























              1












              $begingroup$

              Let's look at an example: take
              $$
              A = pmatrix{3&1\1&3}
              $$

              we have
              $$
              A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
              $$

              So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
              $$
              sup_{xneq 0} frac{|Ax|}{|x|}
              = sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
              $$

              For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
              $$
              frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
              $$

              So that
              $$
              sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
              sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
              $$

              so that in this case, $|A| = 5$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Let's look at an example: take
                $$
                A = pmatrix{3&1\1&3}
                $$

                we have
                $$
                A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
                $$

                So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
                $$
                sup_{xneq 0} frac{|Ax|}{|x|}
                = sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
                $$

                For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
                $$
                frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
                $$

                So that
                $$
                sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
                sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
                $$

                so that in this case, $|A| = 5$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Let's look at an example: take
                  $$
                  A = pmatrix{3&1\1&3}
                  $$

                  we have
                  $$
                  A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
                  $$

                  So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
                  $$
                  sup_{xneq 0} frac{|Ax|}{|x|}
                  = sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
                  $$

                  For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
                  $$
                  frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
                  $$

                  So that
                  $$
                  sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
                  sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
                  $$

                  so that in this case, $|A| = 5$.






                  share|cite|improve this answer









                  $endgroup$



                  Let's look at an example: take
                  $$
                  A = pmatrix{3&1\1&3}
                  $$

                  we have
                  $$
                  A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
                  $$

                  So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
                  $$
                  sup_{xneq 0} frac{|Ax|}{|x|}
                  = sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
                  $$

                  For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
                  $$
                  frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
                  $$

                  So that
                  $$
                  sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
                  sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
                  $$

                  so that in this case, $|A| = 5$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 22 at 0:42









                  OmnomnomnomOmnomnomnom

                  128k791186




                  128k791186






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082592%2foperator-norm-a-sup-x-neq-0-fracaxx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                      How to fix TextFormField cause rebuild widget in Flutter