Operator norm $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$
$begingroup$
My teacher defined the operator norm as $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$. I'm not really sure if I understand this definition, so, can anyone explain it to me, for example, let $A$ be $begin{pmatrix}1&3\ 5&7end{pmatrix}$. Or if it has to be with functions, let $A$ be $begin{pmatrix}x&3x\ 5x&7xend{pmatrix}$.
Thank you.
matrices eigenvalues-eigenvectors norm
$endgroup$
add a comment |
$begingroup$
My teacher defined the operator norm as $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$. I'm not really sure if I understand this definition, so, can anyone explain it to me, for example, let $A$ be $begin{pmatrix}1&3\ 5&7end{pmatrix}$. Or if it has to be with functions, let $A$ be $begin{pmatrix}x&3x\ 5x&7xend{pmatrix}$.
Thank you.
matrices eigenvalues-eigenvectors norm
$endgroup$
2
$begingroup$
$A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
$endgroup$
– Anthony Ter
Jan 22 at 0:27
add a comment |
$begingroup$
My teacher defined the operator norm as $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$. I'm not really sure if I understand this definition, so, can anyone explain it to me, for example, let $A$ be $begin{pmatrix}1&3\ 5&7end{pmatrix}$. Or if it has to be with functions, let $A$ be $begin{pmatrix}x&3x\ 5x&7xend{pmatrix}$.
Thank you.
matrices eigenvalues-eigenvectors norm
$endgroup$
My teacher defined the operator norm as $||A||=sup_{x neq 0} frac{||A(x)||}{||x||}$. I'm not really sure if I understand this definition, so, can anyone explain it to me, for example, let $A$ be $begin{pmatrix}1&3\ 5&7end{pmatrix}$. Or if it has to be with functions, let $A$ be $begin{pmatrix}x&3x\ 5x&7xend{pmatrix}$.
Thank you.
matrices eigenvalues-eigenvectors norm
matrices eigenvalues-eigenvectors norm
asked Jan 22 at 0:18
user25568user25568
1138
1138
2
$begingroup$
$A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
$endgroup$
– Anthony Ter
Jan 22 at 0:27
add a comment |
2
$begingroup$
$A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
$endgroup$
– Anthony Ter
Jan 22 at 0:27
2
2
$begingroup$
$A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
$endgroup$
– Anthony Ter
Jan 22 at 0:27
$begingroup$
$A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
$endgroup$
– Anthony Ter
Jan 22 at 0:27
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Using the example provided, the operator norm of $A$ is the quantity,
$$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$
$endgroup$
add a comment |
$begingroup$
Let's look at an example: take
$$
A = pmatrix{3&1\1&3}
$$
we have
$$
A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
$$
So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
$$
sup_{xneq 0} frac{|Ax|}{|x|}
= sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
$$
For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
$$
frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
So that
$$
sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
so that in this case, $|A| = 5$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082592%2foperator-norm-a-sup-x-neq-0-fracaxx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using the example provided, the operator norm of $A$ is the quantity,
$$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$
$endgroup$
add a comment |
$begingroup$
Using the example provided, the operator norm of $A$ is the quantity,
$$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$
$endgroup$
add a comment |
$begingroup$
Using the example provided, the operator norm of $A$ is the quantity,
$$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$
$endgroup$
Using the example provided, the operator norm of $A$ is the quantity,
$$sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} 1 & 3 \ 5 & 7end{pmatrix} begin{pmatrix} x \ y end{pmatrix}right|}{left|begin{pmatrix} x \ y end{pmatrix}right|} = sup_{(x, y) neq (0, 0)} frac{left|begin{pmatrix} x + 3y \ 5x + 7y end{pmatrix}right|}{left|begin{pmatrix} x \ yend{pmatrix}right|} = sup_{(x, y) neq (0, 0)} sqrt{frac{(x + 3y)^2 + (5x + 7y)^2 }{x^2 + y^2}}.$$
answered Jan 22 at 0:30
Theo BenditTheo Bendit
19.3k12353
19.3k12353
add a comment |
add a comment |
$begingroup$
Let's look at an example: take
$$
A = pmatrix{3&1\1&3}
$$
we have
$$
A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
$$
So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
$$
sup_{xneq 0} frac{|Ax|}{|x|}
= sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
$$
For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
$$
frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
So that
$$
sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
so that in this case, $|A| = 5$.
$endgroup$
add a comment |
$begingroup$
Let's look at an example: take
$$
A = pmatrix{3&1\1&3}
$$
we have
$$
A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
$$
So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
$$
sup_{xneq 0} frac{|Ax|}{|x|}
= sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
$$
For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
$$
frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
So that
$$
sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
so that in this case, $|A| = 5$.
$endgroup$
add a comment |
$begingroup$
Let's look at an example: take
$$
A = pmatrix{3&1\1&3}
$$
we have
$$
A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
$$
So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
$$
sup_{xneq 0} frac{|Ax|}{|x|}
= sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
$$
For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
$$
frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
So that
$$
sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
so that in this case, $|A| = 5$.
$endgroup$
Let's look at an example: take
$$
A = pmatrix{3&1\1&3}
$$
we have
$$
A(x) = pmatrix{3&1\1&3}pmatrix{x_1\x_2} = pmatrix{3x_1+x_2\x_1+3x_2}
$$
So, we have $|Ax| = sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}$. Our goal is to compute
$$
sup_{xneq 0} frac{|Ax|}{|x|}
= sup_{(x_1,x_2) neq (0,0)}frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}}
$$
For this operator, we can make things easier to compute with the substitution $u_1 = x_1 + x_2$ and $u_2 = x_1 - x_2$. With this we can write
$$
frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} = frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
So that
$$
sup_{(x_1,x_2)neq (0,0)} frac{sqrt{(3x_1+x_2)^2 + (x_1+3x_2)^2}}{sqrt{x_1^2 + x_2^2}} =
sup_{(u_1,u_2) neq (0,0)}frac{sqrt{25u_1^2 + u_2^2}}{sqrt{u_1^2+u_2^2}}
$$
so that in this case, $|A| = 5$.
answered Jan 22 at 0:42
OmnomnomnomOmnomnomnom
128k791186
128k791186
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082592%2foperator-norm-a-sup-x-neq-0-fracaxx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
$A(x)$ would be a vector, $begin{bmatrix} x_1 + 3x_2 \ 5x_1 + 7x_2 end{bmatrix}$ in your example, so $frac{||A(x)||}{||x||} = frac{sqrt{(x_1 + 3x_2)^2 + (5x_1 + 7x_2)^2}{sqrt{x_1^2 + x_2^2}}$. Taking the supremum of this gives the operator norm.
$endgroup$
– Anthony Ter
Jan 22 at 0:27